
THESIS

INTEGRATION OF ASW HELICOPTER
OPERATIONS AND ENVIRONMENT

INTO NPSNET

by

Frederick Charles Lentz, III

September 1995

 Thesis Advisor: Michael J. Zyda
 Co-Advisor: John S. Falby

Approved for public release; distribution is unlimited.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSORING/ MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

5. FUNDING NUMBERS

i

Lentz, Frederick Charles, III

September 1995 Master’s Thesis

Unclassified Unclassified ULUnclassified

INTEGRATION OF ASW HELICOPTER OPERATIONS AND
ENVIRONMENT INTO NPSNET (U)

Naval Postgraduate School
Monterey, CA 93943-5000

The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

Approved for public release; distribution is unlimited.

Despite the increasing emphasis by the military on joint force operations, existing modelling and
simulation programs, including NPSNET, fail to address joint operations and crew coordination. The
problem is that previous work on NPSNET, the virtual environment and visual simulation platform
developed by the Computer Science Department at the Naval Postgraduate School in Monterey,
California, has focused primarily on individual ground force elements with little emphasis on naval forces
or crew concepts. This restricts the practical use of the system to ground force training while ignoring joint
force training with sea and air components and between crew members.

One solution to is expand the capability of NPSNET by incorporating a variety of vehicles from
different components of the military with the added capability of multiple workstation control of a single
vehicle. The approach taken is to expand NPSNET to simulate helicopter Anti-Submarine Warfare. This
work focuses on realistic helicopter flight control, multiple workstation control of a single vehicle, and
interface design between workstations controlling one vehicle.

NPSNET has become a more useful training tool for today’s military forces by implementing more
realistic helicopter flight controls and adding joint mission capabilities. The significance of this work is
that a broad range of forces can receive valuable joint training and crew coordination training conducted
in a virtual environment.

NPSNET, Interface, Helicopter, ASW, Network, Simulation, Virtual
Environment.

ii

iii

Approved for public release; distribution is unlimited

INTEGRATION OF ASW HELICOPTER OPERATIONS
AND ENVIRONMENT INTO NPSNET

Frederick Charles Lentz, III
Lieutenant, United States Navy

B.A., Virginia Tech, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1995

Author:

Frederick Charles Lentz, III

Approved by:

Michael J. Zyda, Thesis Advisor

John S. Falby, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

iv

v

ABSTRACT

Despite the increasing emphasis by the military on joint force operations, existing

modelling and simulation programs, including NPSNET, fail to address joint operations

and crew coordination. The problem is that previous work on NPSNET, the virtual

environment and visual simulation platform developed by the Computer Science

Department at the Naval Postgraduate School in Monterey, California, has focused

primarily on individual ground force elements with little emphasis on naval forces or crew

concepts. This restricts the practical use of the system to ground force training while

ignoring joint force training with sea and air components and between crew members.

One solution to is expand the capability of NPSNET by incorporating a variety of

vehicles from different components of the military with the added capability of multiple

workstation control of a single vehicle. The approach taken is to expand NPSNET to

simulate helicopter Anti-Submarine Warfare. This work focuses on realistic helicopter

flight control, multiple workstation control of a single vehicle, and interface design

between workstations controlling one vehicle.

NPSNET has become a more useful training tool for today’s military forces by

implementing more realistic helicopter flight controls and adding joint mission capabilities.

The significance of this work is that a broad range of forces can receive valuable joint

training and crew coordination training conducted in a virtual environment.

vi

vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. BACKGROUND .. 1
B. MOTIVATION ... 2

1. Expansion of NPSNET’s Scope .. 2
2. The Need for a Realistic Helicopter Control Model 2

C. OBJECTIVES ... 3
D. CHAPTER SUMMARY ... 3

II. PREVIOUS WORK .. 5
A. NPSNET OVERVIEW ... 5
B. NPSNET PANEL INTERFACE ... 8

III. BASICS OF HELICOPTER FLIGHT .. 11
A. INTRODUCTION .. 11
B. HELICOPTER AERODYNAMICS ... 11

1. Weight ... 13
2. Lift ... 14
3. Thrust .. 14
4. Drag ... 16
5. Torque ... 17

C. HELICOPTER CONTROL .. 18
1. Collective .. 19
2. Cyclic .. 19
3. Rudder Pedals .. 19
4. Combining Controls .. 20
5. Engine Control .. 20
6. Maximum Forward Airspeed in Level Flight 21

D. HELICOPTER COMPONENTS .. 23
E. SUMMARY .. 24

IV. BASICS OF HELICOPTER ASW .. 25
A. INTRODUCTION .. 25
B. HELICOPTER ASW FLIGHTCREW ... 25

1. Pilot ... 25
2. Airborne Tactical Officer (ATO) .. 25
3. Sensor Operator (SO) .. 26
4. Aircrew Coordination .. 26

C. HELICOPTER ASW SENSORS .. 27
1. Sonobuoys ... 27
2. Radar and Identification Friend or Foe (IFF) System 28
3. Magnetic Anomaly Detector (MAD) .. 28

D. HELICOPTER ASW WEAPONS .. 29
1. Mk 46 and Mk 50 Torpedoes .. 29
2. Penguin Missile ... 30

viii

E. SUMMARY ...30
V. HELICOPTER CONTROL MODELLING IN NPSNET 31

A. PREVIOUS HELICOPTER CONTROL METHODOLOGY31
B. NEW HELICOPTER CONTROL METHODOLOGY32

1. Flight Control Data ..33
a. Joystick Input ..33
b. Rudder Pedal Input ...37
c. Throttle Input ..38

2. Vector Calculations ..40
3. Weight Vector ..42
4. Velocity ..42
5. Ground Motion ...43

C. SUMMARY ...45
VI. INTERFACE FOR MULTIPLE WORKSTATION ASW 47

A. INTERFACE PANEL DESIGN ..47
B. COMMUNICATION WITH NPSNET ...47

1. Original Implementation ..47
2. Exclusive Two-way Communication with NPSNET52

a. Communication from the Interface Panel to NPSNET53
b. Communication from NPSNET to the Interface Panel55

C. GUI_MSG_DATA PACKET UTILIZATION FOR ASW56
1. Fly-to-Point Navigation ...57
2. Weapons Delivery ..58

D. SUMMARY ...59
VII. ASW SYSTEM DESCRIPTION ... 61

A. INTRODUCTION ...61
B. PANEL RADAR DISPLAY ..61

1. Fly-to-Point Management ..62
a. Entering FTP’s ..63
b. Capturing FTP’s ...64
c. Deleting FTP’s ..65

2. Sonobuoy Usage ..65
a. Entering Sonobuoys ..66
b. Sonobuoy Contact Information ..67

3. Weapons Launch ..68
C. WEAPONS SIMULATION ..69
D. SUMMARY ...70

VIII. RESULTS, CONCLUSIONS, AND FUTURE RESEARCH 73
A. RESULTS ..73
B. CONCLUSIONS ...74
C. FUTURE RESEARCH ..74

APPENDIX A. SOURCE CODE FOR NPSNET IN REMOTE MODE (MAIN.CC)75
APPENDIX B. SOURCE CODE PANEL MESSAGE CLASS (MESSAGE.C)79

ix

APPENDIX C. SOURCE CODE PANEL RADAR CLASS (RADAR.H)85
APPENDIX D. SOURCE CODE PANEL RADAR CLASS (RADAR.C)89
LIST OF REFERENCES ..107
INITIAL DISTRIBUTION LIST ...109

x

xi

LIST OF FIGURES

 1. Generic Balance of Forces...12
 2. Helicopter Balance of Forces...13
 3. Lift vs. Thrust...15
 4. Backwards and Sideways Thrust ...16
 5. Helicopter Torque ..17
 6. Helicopter Control Components ..18
 7. Main Rotor Blade Airspeed ...22
 8. Helicopter Components ...23
 9. Passive Sonobuoy Operation ...28
 10. Active Sonobuoy Operation...29
 11. One Vector Control Model ..31
 12. Four Vector Control Model ...33
 13. Joystick Data Flow...34
 14. Rudder Pedal Data Flow ..38
 15. Throttle Data Flow...39
 16. Total Velocity Vector ..41
 17. Interface Panel in ASW Helicopter Mode ...48
 18. GUI_MSG_DATA structure..49
 19. Single Panel/Single NPSNET Cooperation ...50
 20. Single Panel/Multiple NPSNET Problem..51
 21. Multiple Panel/Multiple NPSNET Problem ..51
 22. Desired Multiple Panel/Multiple NPSNET Cooperation.......................................52
 23. Example hosts.dat File ...54
 24. Communication of FTP Information ...58
 25. FTP Example ...63
 26. Deleting FTP’s ...66
 27. Sonobuoy Examples...67
 28. Multiple Sonobuoy Contact ...70

xii

xiii

ACKNOWLEDGEMENTS

This project is made possible through the tireless efforts of a number of people. Both

directly and indirectly, their assistance was invaluable to completing this research. I would

like to take this opportunity to thank those who provided any guidance or assistance to my

efforts. Dr. Mike Zyda and Mr. John Falby provided me the opportunity to do research in

something I found interesting, then gave me the guidance I needed to keep the research in

focus and meaningful. Mr. Paul Barham was also instrumental to keeping this research

going through the many logjams I encountered. His expertise in NPSNET was vital to

getting and staying off the ground. Without them, this work would not have been possible.

I would also like to thanks everyone in the CS41 Graphics Track for their assistance,

despite the fact that much of our work seemed to contradict each other at times. We were

all able to peacefully coexist and come up with some good results. Special thanks to Al

Shaffer for his programming expertise. He was instrumental in writing functioning source

code.

In addition, I would like to thank Mr. Don Selvy at A&T, Inc. His efforts in helping

me retrieve the helicopter control information I needed were vital to my understanding of

how to make this helicopter fly.

Finally, my deepest gratitude goes to my wife, Nadine, and my daughter, Alyssa, for

their loving support and understanding during the many hours I couldn’t help out around

the house, read books, or play.

Without the help and moral support of these people, this work would not have been

possible.

xiv

1

I. INTRODUCTION

A. BACKGROUND

One of the goals of virtual reality is to present to users an interactive environment

closely resembling the real world. While not as real as the world we live in, we always

strive to make it so, giving the user of the environment some sense that his interactions are

real. This matches closely with a goal of military computer simulation: provide as real a

training environment as possible so as to maximize the training benefit to the individual and

minimize the risks inherent in real world training. With the military’s increasing emphasis

on joint operations, conducting training exercises in real environments between services,

or between different units in the same service, is vitally important, but logistically difficult,

if not impossible. This is made more difficult by the ever increasing demand for the U.S.

military to conduct extensive operations on unfamiliar foreign soil or waters with little to

no advance notice.

NPSNET is a distributed virtual environment and computer simulation research

effort which came about in response to these goals and requirements. By being distributed,

military units at distant locations can interact with each other in a common and realistic

virtual environment, providing useful training between distinct units without the need for

being in the same physical location [ZYDA94]. The virtual environment gives the user the

feeling of being in the real world with the same freedom that he would have if he was out

in the field. This research is an attempt to expand the scope of NPSNET’s current

implementation, which is primarily geared toward ground-based forces and operations, to

include naval helicopter based anti-submarine warfare (ASW) forces and operations.

2

B. MOTIVATION

1. Expansion of NPSNET’s Scope

Joint operations are becoming the primary focus of the military. For example, land,

air, and sea forces from the Army, Navy, Air Force and Marine Corps, and armed services

from several foreign countries, were closely integrated in the U.S.-Iraqi War in 1991.

Training and rehearsal in a virtual environment representation of the region could be used

to prepare the various components of a joint military force by giving them a basic idea of

the terrain and what to expect from other services and units during battle. This is not as

realistic as actually going into the real world environment of concern, but it is a much more

cost effective training tool than assembling all the involved units at the location, whether

that be land, sea, or air, or any combination of these.

As already mentioned, NPSNET primarily simulates ground-based military

operations. Tanks, foot soldiers, and helicopter gunships represent the bulk of what can

currently be simulated. This does not represent the current trend in tactical training and

simulation described above. To solve this problem, NPSNET needs to be expanded to

involve more platform types and more terrain databases. This would allow a wider variety

of military units representing many more operational platform types than currently

implemented, to benefit from the joint training that NPSNET can provide. Adding

helicopter ASW functionality to NPSNET is a step in this direction.

2. The Need for a Realistic Helicopter Control Model

As stated above, NPSNET is a computer workstation based simulation program of

various operational platforms. To provide realistic simulation to users of the system, the

user must be able to control the vehicle they are simulating in a manner closely

approximating the way they would operate the actual vehicle they use. This maximizes the

training benefit of the system by realistically simulating as many aspects of the actual

system as practicable, limited by the capabilities of the workstation on which the simulation

will run and the input devices utilized.

3

The current implementation of helicopter operations in NPSNET is based primarily

on tactics. An AH-64 helicopter can fire missiles, shoot a machine gun, or drop bombs.

With helicopter ASW functionality added to NPSNET, an SH-60 helicopter can drop

sonobuoys or torpedoes to find a submarine or fire an anti-ship missile. In both of these

cases, however, only half of what is important to a tactical simulation is actually being

simulated, which happens to be the tactics themselves. Equally as important to realistic

simulation is actual control of the vehicle, in this case the helicopter.

The current model of helicopter control in NPSNET is the same as that for any fixed

wing aircraft in the system. While this may provide enough realism and accuracy to the

simulation of a fixed wing aircraft, it is not at all realistic for helicopter control, which is

more complex. The solution to this problem is to change the control paradigm currently

used for helicopters to one that more accurately reflects how a real helicopter is flown. This

provides a much greater level of realism to the user, thereby increasing the level of training

received.

C. OBJECTIVES

The objective of this research is the design and construction of an interface to

simulate helicopter ASW in NPSNET. This interface provides to a user on a single

computer workstation or multiple users at different workstations representing one ASW

helicopter the capability to realistically prosecute a subsurface contact by utilizing the basic

ASW capabilities added to the system. The interface provides the ability to exercise aircrew

concepts regardless of whether a single workstation or multiple workstations are

participating in the simulation. Another objective is to increase the realism of operating any

helicopter in NPSNET by changing the control inputs to inputs representative of a real

helicopter.

D. CHAPTER SUMMARY

Chapter II provides an overview of NPSNET, including previous work forming the

basis of this research effort. Chapter III describes some basics of helicopter control and

4

crew concept. Chapter IV provides an overview of helicopter based ASW operations.

Chapter V details the implementation of helicopter control developed from this research.

Chapter VI describes the interface designed for multiple workstation helicopter ASW

simulation. Chapter VII provides a description of the use of the designed ASW system.

Chapter VIII details results of testing of the system and presents conclusions of this

research and recommendations for follow on work.

5

II. PREVIOUS WORK

A. NPSNET OVERVIEW

The Naval Postgraduate School Networked Vehicle Simulator IV (NPSNET-IV) is

a three-dimensional virtual environment and visual simulation system. Using the

Distributed Interactive Simulation (DIS) protocol, it operates in real-time over large-scale

networks on commercial, off-the-shelf Silicon Graphics workstations [ZYDA95].

In operating NPSNET-IV, a user on a workstation initializes the system to simulate

a specific vehicle in a specific terrain database. Currently, the user can choose among a

number of aircraft, ground vehicles, or a synthetic human. The choice of terrain database

includes a generic training database, a database for Fort Hunter Liggett, California, and a

database for Fort Benning, Georgia. Once the system has been initialized, the user has a

view of the virtual environment, which is the terrain database selected, from the vehicle

chosen. He can then move around in that virtual environment with an amount of freedom

based on the properties of the vehicle his workstation is simulating and can fire the weapons

that vehicle has been programmed to use.

When a user chooses to initialize the workstation as a helicopter, the functionality

provided is that of a ground attack helicopter, either the AH-64 Apache or the NATO

designated HIND helicopter. The weapons available include machine guns, missiles and

bombs for attacking airborne or ground based entities. The vehicle is moved around in the

virtual environment by “flying” the helicopter with the available input devices. These

devices include a joystick and throttle, keyboard, or spaceball [ZYDA94]. All of this gives

the user the look and feel of being in his helicopter operating inside the virtual environment.

What has been described so far only represents one entity in the virtual

environment: one helicopter in a specific terrain database. Another aspect of NPSNET-IV

that needs to be described is the network: how other workstations and the vehicles they

6

simulate can interact with the helicopter. Each workstation on the network that participates

in the simulation runs its own NPSNET-IV executable. When started, the program searches

the local network to see if other workstations are participating in a simulation with the same

exercise number. If so, these workstations now participate in the same simulation. For

example, if the helicopter was initialized using the same exercise number as another

workstation, then these two vehicles can interact with each other. This interaction involves

being able to see each other, fire weapons at each other, see explosions caused by each other

and their results, or team up with each other against other entities in the simulation.

All of this interaction is possible through the use of the DIS protocol over the

network. Each workstation transmits DIS packets to inform other workstations in the

simulation about the status of that vehicle. For example, when the helicopter makes a turn,

the program sends a DIS packet onto the network indicating a turn. When the other

workstations receive this packet, they update their representation of that vehicle so that it

executes the same turn as the originator. This same scenario takes place for all dynamic

events in NPSNET-IV.

The DIS packets that are sent are called protocol data units (PDU’s). NPSNET-IV

uses three of the available PDU types from the DIS protocol. These are the entity state

PDU, weapon fire PDU, and detonate PDU [ZYDA94]. All of these indicate to other

workstations in the simulation dynamic events that originate on the sending workstation.

The result of this communication is that each workstation conducts the same simulation so

that interaction among vehicles is as realistic as possible.

Since NPSNET-IV runs over a network, simulating a single vehicle is only part of

what it must do. Each workstation must also show its user the other vehicles in the

simulation in a realistic manner. To prevent saturation of the network with traffic to

constantly update the position of each vehicle in the simulation, each workstation maintains

a low resolution model of the other vehicles in the simulation used to calculate the predicted

position of those vehicles based on recent PDU’s it received. Each workstation also

maintains two models of itself: a high resolution model to track its actual position in the

7

virtual environment, and a low resolution model which uses the same prediction scheme

noted above. This method of prediction is called dead-reckoning, and it keeps track of a

vehicle’s position, attitude, course and speed by predicting from the data contained in entity

state PDU’s [ZYDA94]. When the two vehicle models a workstation maintains of itself

differ by a predetermined amount of error, or a certain amount of time has elapsed since the

last update, a new entity state PDU is transmitted. This causes the other workstations to

update their low resolution model of that vehicle and continue dead-reckoning from the

current position stated in the PDU.

As noted earlier, NPSNET-IV is a real-time system. Each workstation bases its

simulation on its system clock. So regardless of the graphics frame rate that can be achieved

on a particular workstation, the simulation is the same on all workstations. For the dead-

reckoning procedures described above then, a workstation receives a PDU to update some

other entity in the simulation. Since that PDU is no longer current due to network

transmission delays, the workstation dead-reckons from the time listed in the PDU. This

time represents the time that the entity state PDU was generated and hence, when the

location information about that vehicle was valid. The effect of this dead-reckoning scheme

is that one simulation can be conducted on a variety of workstations at once without

sacrificing accuracy of the simulation. A lower-end, slower CPU workstation can provide

just as much realism in the simulation as one executed on a higher-end, fast CPU and

multiple CPU workstation. All workstations show the same vehicles behaving alike and

place them in accurate locations since it is all based on time.

The final part of the simulation that must be dealt with is the terrain. In NPSNET-

IV, each workstation maintains its own copy of the terrain database. This allows for a high

amount of detail when each workstation draws the terrain while at the same time preventing

large amounts of network traffic that would be needed if the database were stored in a

central location.

8

B. NPSNET PANEL INTERFACE

In thesis work by Chris McMahan, a windowed subsystem of NPSNET was

developed to provide a common interface for the various vehicles of a simulation

[MCMA95]. This interface was constructed using Motif and the Viewkit Development

Toolkit to separate the functionality of the interface from the simulation and visualization

engines. The advantage of this approach is that it allows development of new interface

components without sacrificing speed or efficiency in NPSNET. It also allows users to

easily adapt to methods of controlling different types of vehicles without having to

memorize the many keyboard commands now used to control vehicles.

There are some disadvantages to this approach. First, use of this interface panel

detracts from the realism of a simulation. When used as the primary interface for a vehicle

in a simulation, a mouse adjusts the various components of the panel, which, in turn,

controls the vehicle. Real vehicles use real controls. To simulate these vehicles realistically,

similar controls are needed to provide the user with the feel of the vehicle he is simulating.

If the panel is used as secondary instrumentation for a vehicle, however, realism can be

maintained while still providing more information to the user.

Another disadvantage of the interface employed in McMahan’s research is that

there is no concept of one panel controlling one vehicle while another panel controls

another vehicle. The reason for this is that the communication between the panel

application and NPSNET has no facility for identifying which packet goes to which entity

of the simulation. In addition, when NPSNET sends packets to the panel, there is no

identifying information about which entity sent the packet. The result of this is that the

panel shows information from all entities in the simulation, and any controlling information

sent by the panel to the entity goes to any entity that has remote control designated at

initialization. Only one panel can effectively be used with one entity, while the rest of the

entities have no panel associated with them in the simulation.

Despite these drawbacks, the interface panel concept developed by McMahan is

useful to this research as mentioned above: as secondary instrumentation to users of the

9

ASW helicopter being developed. If the panel can be instantiated once for every ASW

helicopter initialized, the door is open for two users to control the helicopter, one using the

flight controls and visualization effects already provided by NPSNET, and the other

controlling the ASW tactical situation from information provided by the interface panel. If

the two users operating these functions can communicate through their respective

interfaces, a realistic simulation can be conducted which provides a degree of crew concept

needed to effectively prosecute a subsurface contact.

10

11

III. BASICS OF HELICOPTER FLIGHT

A. INTRODUCTION

To understand what is needed to make simulation of helicopters more realistic in

NPSNET, on must first understand how a real helicopter operates. This chapter describes

basic helicopter aerodynamics, helicopter flight control, and the major components of a

helicopter. While not intended to be a comprehensive examination of helicopter flight, the

information contained here is provided as background for the changes made to NPSNET

helicopter simulation, as described in Chapter V.

B. HELICOPTER AERODYNAMICS

There are several techniques for describing the physics of flying helicopters. The

most realistic method used today is “blade element theory”, which describes the

aerodynamic elements of flight by dealing with the forces on each individual rotor blade

[PROU86]. This method for calculating helicopter motion is used in modern flight

simulators since it can provide a great deal of realism to the pilot in the simulation. While

very complex, these types of simulators accomplish real time calculation and simulation

through the use of specialized computing hardware. The design of these computer systems

is specifically aimed at fast performance of complex integration to provide the most realism

possible to pilots.

The blade element method quickly becomes impractical when considering

NPSNET, which must calculate motion for a variety of vehicle types using off-the-shelf

computer systems over a networked environment. The comparative slowdowns caused by

the use of these systems make the realism provided by the blade element method impossible

to recreate. In addition, NPSNET was not designed to provide this level of detail to the

individual user.

12

A simpler method is the “balance of forces” method. This method describes motion

resulting from the forces acting on an airframe. The major forces acting on a helicoter

airframe are lift, thrust, drag, weight and torque. Representing these forces by vectors gives

a much less complex description of aerodynamics in a helicopter, allowing faster

computation and a more realistic simulation than is currently accomplished in NPSNET.

Figure 1 shows a general description of the balance of forces on a generic airframe.

Assuming in this general case that lift, weight, thrust and drag all act on the aircraft’s center

of gravity (C.G.), steady state flight can be maintained if all of these forces cancel each

other out. Steady state flight is when there is no acceleration or deceleration, or constant

altitude and constant velocity. In the diagram, if the lift vector is equal in length to the

weight vector and in the exact opposite direction, the aircraft will not accelerate up or

down. The same is true of thrust and drag: if they are equal in length but opposite in

direction, the aircraft will not accelerate or decelerate in its forward motion. If both of these

cases exist at once, the aircraft will be in steady state flight.

In a helicopter, Figure 1 changes slightly. Figure 2 shows how the same forces are

represented in a helicopter. The main difference is that lift and thrust emanate from the

center of the rotor on top of the aircraft, while weight and drag still originate at the C.G.

C.G.

Lift

DragThrust

Weight

Direction of motion

Figure 1: Generic Balance of Forces

13

The following sections give descriptions of each force as they apply to the balance of forces

method for describing the aerodynamics of helicopter flight.

1. Weight

The simplest of the forces in Figure 2 is weight. Weight is a force that originates at

the C.G. of the helicopter and points to the ground. Weight comes from the following

equation:

(Eq. 1)

where:

F = weight, the weight of the helicopter,

m = mass of the helicopter, and

a = acceleration, the acceleration of gravity.

To overcome the weight of the helicopter and produce flight, the main rotor of the

helicopter produces lift. When the amount of lift is greater than the weight, the helicopter

Lift

Thrust

Weight

Drag

Direction of motion

C.G.

Figure 2: Helicopter Balance of Forces

F m a×=

14

will climb. Conversely, when the lift is less than the weight, the helicopter descends. And

when the two are equal, altitude is maintained.

In helicopter flight, weight changes as fuel is used during a flight. As more fuel is

burned, the helicopter becomes lighter. This results in less power required to maintain

steady state flight since the amount of lift needed to offset weight becomes less.

2. Lift

The easiest way to describe lift is by describing how a helicopter hovers. In a

helicopter, lift is produced directly by the main rotor. As power is applied by the pilot, more

lift is created. When the amount of lift becomes greater than the weight of the helicopter as

described above, the helicopter will climb.

The reason this occurs is that each blade of the main rotor is an airfoil, just like the

wings of a fixed-wing aircraft. With no power applied, the pitch of each blade is effectively

zero, so no lift is produced by the main rotor blades. As the pilot applies power, the pitch

of all the blades increases, so lift is produced. If enough power is applied, the rotor blades

will produce enough lift to equal the weight, and a hover is produced. For example, if a

helicopter weighs 20,000 pounds, the amount of lift required to hover is 20,000 pounds. If

less than 20,000 pounds of lift is produced, the helicopter descends. If there is more than

20,000 pounds of lift, it climbs.

Lift is represented by a vector originating from the center of the main rotor. It is

perpendicular to the plane of the main rotor blades and points up.

3. Thrust

Helicopters do not produce thrust like a fixed wing aircraft. Jets and propeller

airplanes produce thrust by driving a large volume of air rearward while the stationary

wings produce lift due to volumes of air flowing over them. In a helicopter, lift is produced

when the main rotor blades move through the air fast enough to obtain sufficient airflow

over them then drive the airflow downward by pitching the blades up. Thrust, however,

15

must be indirectly produced. The way it is accomplished is by tilting the main rotor from

the horizontal plane. This is shown in Figure 3.

As can be seen in Figure 3, the total lift between the two helicopters is the same, as

are their weights. The helicopter on the left has less pitch, so the effective lift, the vertical

component of total lift, is only slightly less than if there was zero pitch. The horizontal

component, effective thrust, has appeared as well. This helicopter will start to accelerate

forward from the amount of effective thrust, but will start to descend slightly as the

effective lift decreases enough to be unable to counteract weight.

The helicopter on the right in Figure 3 has significantly more forward pitch than the

helicopter on the left. The effect here is that there is significantly more effective thrust and

less effective lift. The helicopter will accelerate faster and descend more quickly.

One of the unique features of the helicopter is that thrust can be produced in any

direction by tilting the main rotor in that direction, including backwards and sideways. This

is shown in Figure 4. The importance of this unique quality can be seen in the helicopter’s

a) Forward 10 degrees pitch b) Forward 30 degrees pitch

Weight
Weight

Total
lift Total

lift

Figure 3: Lift vs. Thrust

C.G.C.G.

Effective
lift

Effective
lift

Effective
thrust Effective

thrust

16

ability to hover. By tilting the main rotor in the desired direction, the helicopter can be made

to fly sideways or even backwards.

4. Drag

As shown in Figure 2, drag is the force that thrust must counteract to provide

acceleration and constant state velocity. Drag is opposite to the direction of motion. The

amount of drag is dependent on the magnitude and direction of the helicopter’s velocity and

the angle of attack of the helicopter’s fuselage to the oncoming airflow. As velocity

increases, drag on the fuselage increases, resulting in the need for more power to go faster.

In a similar manner, drag is at a minimum when the fuselage is heading forward. When

flying sideways, the cross-sectional area of the fuselage into the airstream is much larger,

resulting in higher drag. Therefore, it takes less power to fly forward than it does to fly

sideways at the same speed.

a) Backward 20 degrees pitch b) Right 20 degrees roll

Weight
Weight

Effective
thrust

Total
lift

Effective
lift

Effective
lift

Total
lift

Effective
thrust

Figure 4: Backwards and Sideways Thrust

17

5. Torque

Another major force produced by a helicopter is torque, as illustrated in Figure 5.

The engines drive a transmission which spins the main rotor in a counterclockwise

direction. This spinning causes the fuselage to try to rotate in the opposite direction,

clockwise. If this torque force isn’t counteracted, the helicopter would spin out of control.

There are several ways modern helicopters counteract this torque force. The most

common way is through the use of a tail rotor. This anti-torque device is mounted on the

tail of the helicopter and is oriented parallel, or nearly parallel, to the fuselage, as in Figure

5. The tail rotor produces thrust counterclockwise which pulls the tail end of the fuselage

preventing the spinning. So it provides directional control for the fuselage, both in a hover

and in forward flight.

Another way that main rotor torque is counteracted is to have two main rotors

spinning in opposite directions. Since they spin in opposite directions, the torque that each

produces is counteracted by the other, resulting in no torque on the fuselage. A newer

method of counteracting torque is the NOTAR system, where a jet engine serves the same

function as the tail rotor. Located in approximately the same position as a tail rotor, it

Direction of
rotation of
main rotor

Main
rotor
blades

Direction of
rotation of
fuselage due
to torque

Tail rotor
force

Figure 5: Helicopter Torque

Fuselage

18

produces anti-torque by pushing air away from the direction of rotation desired for the

fuselage. This pushes the fuselage in the correct direction to maintain directional control.

C. HELICOPTER CONTROL

Now that all of the aerodynamic forces have been explored, how are these

controlled to actually fly a helicopter? This section describes the common controls used by

most helicopters: the collective, the cyclic and the rudder pedals. These control devices are

shown in Figure 6.

Figure 6: Helicopter Control Components

Pilot’sCopilot’s
collective collective

Engine
control
quadrant

Copilot’s
cyclic

Copilot’s
rudder
pedals

Pilot’s
rudder
pedals

Pilot’s
cyclic

ATO
tactical
display

19

1. Collective

The collective controls the pitch of the main rotor blades. Controlled by the left

hand, the collective is moved up and down to increase or decrease the pitch of the blades

all the same amount, or collectively. This increase in pitch increases the lift produced by

the main rotor and gives the helicopter the ability to climb. Similarly, moving the collective

down decreases the pitch on the main rotor blades producing less or no lift, resulting in a

descent.

2. Cyclic

The cyclic provides the pitch and roll control of the helicopter. By moving the

cyclic to the left or right, the pitch on each of the main rotor blades is adjusted so that the

main rotor disc tilts the same respective direction. Tilting the main rotor in this fashion rolls

the fuselage and results in a turn or a slide.

Pitch is controlled in the same way as roll. If the pilot wishes to pitch the nose of

the helicopter down, he pushes forward on the cyclic. This causes the main rotor blades to

change pitch in cycle, driving the nose of the helicopter down and accelerating the

helicopter.

Pitch and roll commands through the cyclic can be combined as well. For example,

forward pitch and left roll can be commanded for by moving the cyclic to the forward left

position from its center. Any combination of pitch and roll can be input, which tilts the main

rotor in the desired direction producing acceleration in that direction.

3. Rudder Pedals

The rudder pedals provide directional control by changing the pitch on the tail rotor,

changing the amount of anti-torque as described earlier. Generally, with the rudder pedals

in the center position, enough anti-torque is produced for the fuselage to maintain constant

heading. Pushing the left pedal forward increases the amount of anti-torque, turning the

fuselage to the left. Pushing right pedal turns the helicopter to the right by decreasing anti-

torque.

20

4. Combining Controls

In any aircraft, changing control to produce one desired effect usually requires at

least one other control movement to maintain steady flight. One example would be using

the collective to start a climb. When the collective is raised, the pitch of the main rotor

blades increases to produce more lift. A climb results. One side effect of increasing the

collective is a corresponding increase in torque. This is because the pitch of all the main

rotor blades increase and more power is required to keep them turning at a constant rate.

This results in more torque on the fuselage, so it begins to spin slowly to the right. To

counteract this, increases in collective are usually accompanied by adding left pedal. This

helps the helicopter maintain a constant heading.

Another example is the relationship between cyclic pitch and collective. If the pilot

wishes to accelerate forward but maintain his current altitude, he must push the cyclic

forward to tilt the main rotor forward. As described earlier, this increases the effective

thrust produced by the main rotor and decreases the effective lift. To maintain the current

altitude, the pilot must then increase the amount of effective lift by raising the collective.

Finally, the situation described above occurs due to the collective being increased, so left

pedal must also be applied to maintain heading.

5. Engine Control

Another concept that should be explained is the role the engines play in helicopter

flight. In jet aircraft, the amount of thrust is directly related to the speed of the engines. If

the pilot wishes to go faster, he increases the throttle to speed up the engines, which

produces more thrust.

In a helicopter, however, more lift is produced by increasing the pitch on the main

rotor blades. As was stated earlier, the main rotor blades spin at a generally constant rate.

The engines drive a shaft which drives a large reduction gear transmission. This

transmission spins the main rotor and the tail rotor. Since it is desired that the main rotor

spins at a constant rate, the engines run at a constant speed. Controlling the pitch of the

21

rotors is accomplished through direct linkages to the cyclic, collective, and rudder pedals.

The only times that the speed of the engines deviates from their desired constant speed is

during start-up, shutdown, and engine malfunction. In normal flight regimes, engine speed

is not adjusted, so it is unrelated to control of lift and thrust.

6. Maximum Forward Airspeed in Level Flight

This is another important concept in helicopter flight. There are two limits related

to this concept: an aerodynamic limit and a control limit.

The aerodynamic limit is related to the spinning of the main rotor blades and is

called blade stall. Blade stall is defined to be the tendency of the retreating blade to stall in

forward flight [NTPS90]. Figure 7 shows the difference between the speeds of the main

rotor blades relative to the oncoming airflow. The airspeed of a rotor blade is calculated by

adding the rotational speed of the rotor blade to the forward airspeed of the helicopter.

When the helicopter is in a hover, as in Figure 7a, forward airspeed of the helicopter is zero.

Therefore, airspeeds of the advancing and retreating blades are the same. In fact, the

airspeed of any blade throughout the 360 degrees of rotation is the same.

In forward flight, however, the advancing blade is rotating into the oncoming

airflow while the retreating blade is rotating away from it. Figure 7b shows that the

advancing blade has a much faster airspeed than the retreating blade. The airspeed of the

retreating blade is calculated by subtracting the forward airspeed of the helicopter from the

rotational velocity of the blade since it is opposite in direction to the oncoming airflow. The

result is that the retreating blade must increase pitch to maintain the same amount of lift as

the advancing blade. If the forward airspeed is too high, the increase in pitch of the

retreating blade will cause it to stall, or lose its ability to produce lift. The advancing blade

will produce a high amount of lift, even at low blade pitch angles, since its airspeed is so

great. Since one side of the aircraft has lift and the other side does not, such an airspeed will

cause the helicopter to depart from controlled flight. Due to the fact that the effect of each

main rotor blade on the total lift is manifested 90 degrees later, the helicopter nose will

22

pitch up when the retreating blade stalls. This has the effect of decreasing forward airspeed

thus increasing the relative airspeed of the retreating blade. Thus, the stall condition is

automatically corrected. However, the forces on the main rotor system during this

transition from normal flight to stall and back can result in catastrophic damage. Hence,

helicopter flight manuals limit the forward airspeeds that a pilot is allowed to fly so that this

blade stall condition is avoided. [NTPS90]

The other limitation on forward airspeed is a result of control limits. As forward

airspeed increases, the pilot must increase collective to maintain altitude, as described

earlier. If the helicopter is heavy enough, the collective will reach the upper limit of its

control range before blade stall airspeed is reached. In this case, maximum forward

airspeed in level flight is limited by the physical control movement limit instead of the

aerodynamic limit of blade stall.

Direction of
rotation of
main rotor

b) Forward flight

Direction of
rotation of
main rotor

No forward
airspeed

a) Hover flight

Helicopter
forward
airspeed

Figure 7: Main Rotor Blade Airspeed

Airspeed of
retreating
blade

Airspeed of
retreating
blade

Airspeed of
advancing
blade

Airspeed of
advancing
blade

23

D. HELICOPTER COMPONENTS

All modern powered aircraft are made up of components necessary to stay airborne

in level flight. These consist of the fuselage, engines, some type of airfoils, and the cockpit.

These components are present in fixed-wing aircraft and helicopters, but their structure and

function can differ. Figure 8 shows these components on a helicopter.

The purpose of a fuselage is the same for a helicopter and fixed-wing airplane: to

house crewmembers and cargo, and to serve as an attachment point for the external

components of the aircraft. In a helicopter, the engines, rotors, and transmissions are all

attached to the fuselage. In addition, all electrical components and control linkages are

inside the fuselage.

The next major component of a helicopter is the engine. This is usually a gas-

turbine, or “jet” engine, and many helicopters have two or more engines. The purpose of

the engines is to drive the thrust producing component of aircraft. In a jet airplane, the thrust

Figure 8: Helicopter Components

airfoil (main rotor)

cockpit fuselage

engines airfoil (tail rotor)

sonobuoy
launcher

24

producer are turbines internal to the engine, and in a propeller airplane, it is the propeller.

In a helicopter, this is the rotor system.

The rotor system is a component that is unique to helicopters. Most helicopters have

a rotor system composed of a main rotor and a tail rotor. The main rotor is a series of large

blades that spin to produce both lift and thrust. When the pitch on the blades is increased,

the blades produce more lift. When the blades are tilted, thrust is produced in the direction

of the tilt.

The tail rotor is the anti-torque device on a helicopter. By pulling/pushing the tail

of the fuselage opposite the direction resulting from the torque produced by the main rotor

blades, directional control of the helicopter is achieved.

Finally, the cockpit is the location where the pilots sit to control the aircraft. An

example of a cockpit is shown in Figure 6. The cyclic, collective, and rudder pedals are

located in the cockpit, with duplicate sets for the pilot and copilot. Both the pilot and copilot

have full control capability over the helicopter. In addition to the flight controls, other

components located in the cockpit are flight and engine instruments, electrical controls and

circuit breakers, and tactical controls. The cockpit contains ample windows for the pilots to

see forward, up, down, and to the side. This allows them to fly in any direction and land in

any suitable location.

E. SUMMARY

Although many of the key concepts of helicopter aerodynamics and flight have

been introduced here, much of the detail has been left out. Only basic concepts were

addressed in the context of NPSNET, so only those concepts were explained in any detail.

More complex concepts, like extreme aerodynamic situations, emergency procedures, and

autorotations, were not introduced as they are beyond the scope of this research.

25

IV. BASICS OF HELICOPTER ASW

A. INTRODUCTION

The other portion of this research involves simulating a helicopter conducting an

anti-submarine warfare (ASW) mission. To understand the simulation system that is

implemented, this chapter describes the components of an ASW mission: the flightcrew,

the sensors, and the weapons. The descriptions given are specific to the SH-60B helicopter,

but generally apply to most modern ASW helicopters.

B. HELICOPTER ASW FLIGHTCREW

The flightcrew of an ASW mission in an SH-60B helicopter consists of three

members: the pilot, the Airborne Tactical Officer, and the Sensor Operator. Each has

specific responsibilities in an ASW mission.

1. Pilot

The pilot performs the flight maneuvers of a mission. His primary responsibility is

the safe conduct of the mission, and he must coordinate the tactics used during the flight

with the ATO. [LWSM92]

2. Airborne Tactical Officer (ATO)

The primary responsibility of the ATO is the tactical conduct of the ASW mission.

This includes deciding where to deploy sonobuoys, maintaining tracks on submarine

contacts, managing use of all helicopter sensors, navigation to target areas for employment

of sensors and weapons, directing weapon delivery and evaluation of attacks. Another

important responsibility is to back up the pilot in safe conduct of the mission. [LWSM92]

26

3. Sensor Operator (SO)

The SO’s primary responsibility is to operate the aircraft’s sensors and monitor the

status of the system. He controls the radar/IFF system, analyzes data from any sonobuoys,

controls the MAD system and analyzes its data. [LWSM92]

4. Aircrew Coordination

One of the most important aspects of safe and successful completion of an ASW

mission is aircrew coordination. The concept is based on each member of the flightcrew

taking care of his own responsibilities during the mission while supporting the other

members of the flightcrew in their responsibilities.

Crew coordination works like this: the pilot operates the flight controls as his

primary duty. He also helps the ATO in his duties by keeping the helicopter at an optimum

altitude and location to accomplish the next task of the mission. This is so sonobuoys or

torpedoes can be launched quickly when needed. The pilot also maintains a lookout for

possible visual contact with a submarine, either by seeing one underwater or by seeing its

periscope.

The ATO controls the conduct of the tactical portion of the mission. For his part of

crew coordination, he backs up the pilot on the flight instruments so that safety of flight is

maintained. If the pilot flies the helicopter into an unsafe situation, the ATO is responsible

for notifying the pilot or taking the control of the helicopter to get it back in a safe flight

regime.

In addition to operating the helicopter’s sensors, the SO aids the ATO by giving

advice about the deployment of sonobuoys and weapons based on the information being

received by the sensors. He also informs the pilot and ATO of equipment malfunctions or

failures that affect the mission or the safety of flight.

27

C. HELICOPTER ASW SENSORS

The SH-60B helicopter sensors for use in ASW missions are sonobuoys, the radar/

Identification Friend or Foe system, and the magnetic anomaly detector system. This

section gives a brief description of each of these.

1. Sonobuoys

The primary ASW sensor for the SH-60B is the sonobuoy. A sonobuoy is an

acoustic underwater sensor used for detecting submarines. The sonobuoy is a cylinder

about forty inches long and eight inches in diameter. When launched from the helicopter

in-flight, it falls until it hits the water, at which point the cylinder deploys a float to stay on

the surface of the water. This float contains a radio transmitter for transmitting information

back to the helicopter. The sonobuoy also deploys an underwater microphone, called a

hydrophone, several hundred feet below it to listen for acoustic signals.

There are two kinds of sonobuoys used by the SH-60B helicopter: active sonobuoys

and passive sonobuoys. The passive sonobuoy can only receive acoustic signals, as shown

in Figure 9. Any acoustic data received by the hydrophone is transmitted back to the

helicopter via the radio transmitter. Computers in the helicopter analyze the signals and

transform them into usable information for the aircrew. The information tells the aircrew

the bearing from the sonobuoy to the subsurface contact. [LWSM92]

An active sonobuoy transmits a sonar signal from its hydrophone into the water,

then listens for the echo of that signal. The echo of the sonar signal is received when it is

reflected off of an underwater contact back to the hydrophone as in Figure 10. The data is

transmitted back to the helicopter via the radio transmitter and, when analyzed, gives range

and bearing information from the sonobuoy to the submarine. [LWSM92]

The SH-60B helicopter can carry and launch any combination of up to 25 active or

passive sonobuoys. The sonobuoy launcher is located on the left side of the fuselage, as

seen in Figure 8. [LWSM92]

28

2. Radar and Identification Friend or Foe (IFF) System

The radar system is used to detect surface or airborne contacts [LWSM92]. In the

ASW mission, the radar is used to detect surfaced submarines or enemy ships.

The IFF system is located on the radar and is used to identify whether potential

threats are from enemy forces or friendly forces [LWSM92]. The system, like the radar,

does not have underwater capability, so its use in ASW is limited to identification of

airborne and surfaced contacts, including surfaced submarines.

3. Magnetic Anomaly Detector (MAD)

The MAD system is designed to detect submarines by measuring the earth’s

magnetic field. It accomplishes this by detecting disturbances in the earth’s magnetic field

caused by a submarine. The system then gives the aircrew a location at which the

disturbance occurred. [LWSM92]

acoustic signal
emitted from
submarine

sonobuoy

radio
transmitter

hydrophone

submarine

Figure 9: Passive Sonobuoy Operation

29

D. HELICOPTER ASW WEAPONS

1. Mk 46 and Mk 50 Torpedoes

The torpedo is the primary ASW weapon used by the SH-60B helicopter. The

torpedo is launched from pylons on either side of the helicopter fuselage. When launched,

the torpedo falls unguided to the water. After water impact, it uses active sonar to home in

on subsurface contacts. The launch point of the torpedo is determined by the ATO based

on his track of the submarine and the capabilities of the torpedo that will be launched.

[LWSM92]

Details about search patterns, acquisition ranges, run times and speeds of either the

Mk 46 or Mk 50 torpedo are classified and beyond the scope of this research. The

description given above is general and the extent of what will be simulated as a result of

this research.

sonobuoy

radio
transmitter

hydrophone

submarine

sonar echo from
submarine

sonar transmission
from hydrophone

Figure 10: Active Sonobuoy Operation

30

2. Penguin Missile

The only other ASW weapon capable of being carried on the SH-60B is the Penguin

missile. This is an infrared homing, air-to-surface missile. Launched from pylons on the

fuselage, the missile is a “fire and forget” weapon, meaning that once it is fired, it is not

dependent on the helicopter for any information or guidance. Prior to launch, though, the

missile receives aircraft velocity, heading and altitude information and targeting

information from the SH-60B weapon systems. This information is used by the missile to

align its inertial navigation system and to navigate to the target unaided. [LWSM92]

E. SUMMARY

This chapter describes the tools used in prosecuting an ASW threat. Most of the

actual tactics involved are classified and beyond the scope of this research. The purpose

here was to give a basic knowledge of the personnel, sensors, and weapons needed to

successfully track and attack a subsurface contact so that they could be reasonable

simulated in NPSNET. Implementation of classified tactics and sensor/weapons is

independent of the system developed for NPSNET by this research.

31

V. HELICOPTER CONTROL MODELLING IN NPSNET

A. PREVIOUS HELICOPTER CONTROL METHODOLOGY

Motion of helicopters in NPSNET prior to this research was based on a single vector

representing the velocity of the helicopter. The vector is oriented from the center of the

helicopter through its front, as shown in Figure 11. Its direction in NPSNET world

coordinates is calculated from the heading, pitch, and roll angle values as determined from

joystick input. Always being oriented out of the front of the helicopter, however, means that

the it is limited to motion forwards and backwards.

Y-axis:
velocity

C.G.

Figure 11: One Vector Control Model

32

The speed of the helicopter, represented by the velocity vector’s magnitude, is

determined by the throttle setting. It can vary anywhere from zero to the maximum speed

of the helicopter, defined at compile time to be 100 m.p.h., regardless of its attitude. This

further limits the helicopter to forward motion without the capability of going backwards,

something real helicopters are quite capable of.

Another problem here is that this model allows the simulated helicopter to remain

stationary in space, simulating a hover, regardless of its attitude. As explained in Chapter

III, however, real helicopters cannot hover at pitch and roll settings other than zero. A

helicopter must first decelerate to zero airspeed then set its hover attitude. Any other pitch

and roll setting causes the helicopter to accelerate out of a hover.

The result of this model is that the helicopter has freedom of motion in pitch, roll,

and heading angles, and in its positive y axis only. A new model was needed to accurately

model how real helicopters can move.

B. NEW HELICOPTER CONTROL METHODOLOGY

This section describes the methodology for calculating the helicopter’s motion. It

describes how the control data from the joystick, throttle and rudder pedals is interpreted to

calculate velocity.

Real helicopter motion, described in Chapter III, has freedom of motion in pitch,

roll, and heading angles as well as positive and negative x, y, and z axes. This allows the

helicopter to slide left and right (x axis), go forward and backward (y axis), and go up and

down (z axis). This unique quality of helicopters allows independent motion in any of these

axes.

To accurately model this ability, a four axis system was developed. This model,

shown in Figure 11, uses control inputs to calculate the speeds in the x, y, and z axes, and

is based on the balance of forces theory of aerodynamics described in Chapter III. The first

step is to extract the control input data and convert that into magnitudes for the four vectors

and into heading pitch and roll angles.

33

1. Flight Control Data

a. Joystick Input

Figure 13 shows how the raw data from the joystick gets converted into

values for the x and y axes in Figure 11. The joystick is used to simulate a helicopter cyclic,

which controls the helicopter’s pitch and roll. Raw data from the joystick ranges from -1.0

to 1.0 in both the pitch and roll channels. In the pitch channel, -1.0 is returned by the

joystick when it is pushed all the way forward, while 1.0 is returned when it is pulled back.

The center position is 0.0, and values in this range indicate how far forward or backward

the joystick is moved. The roll channel operates in a similar manner: -1.0 is the leftmost

position, 0.0 is the center, and 1.0 is the rightmost position, with varying values in between.

Y-axis:
forward

C.G.

Figure 12: Four Vector Control Model

velocity

X-axis:
lateral
velocity

Z-axis:
total lift

-Z-axis:
weight

34

The raw pitch and roll data is used to find the magnitude and then the

direction of the forward and lateral velocity vectors. In calculating the vector magnitudes,

raw pitch and roll data are first used to calculate forward and lateral change variables. The

equations used are:

(Eq. 2)

(Eq. 3)

These equations represent the amount of change that will be applied to

acceleration in each of these channels. For example, assume that the helicopter is at a

constant speed with the joystick in the center position (raw pitch and roll are both 0.0). If

the pilot wishes to decelerate, he pulls back on the joystick. The raw pitch data is now some

value between 0.0 and 1.0, depending on how far the joystick was pulled back. As can be

seen in Eq. 2, this value is multiplied by the dampening constant 0.09 then negated, which

Joystick data

Raw pitch Raw roll
(-1.0 to 1.0) (-1.0 to 1.0)

Roll
angle

Pitch
angle

Forward
speed

Lateral
speed

Euler
matrix

Figure 13: Joystick Data Flow

(heading, pitch,
roll angles)

(vector
magnitude)

(vector
magnitude)

Heading
angle

forward∆ raw pitch data * 0.09()–=

lateral∆ raw roll data * 0.09=

35

results in a value between -1.0 and 0.0. This change variable is later added to forward

acceleration, indicating that the acceleration should get smaller. In the case of the example,

since the helicopter was at constant airspeed, there was no acceleration, so acceleration

becomes negative and the helicopter decelerates as a result. This works in a similar manner

for lateral acceleration, with the exception that the value is not negated, as shown in Eq. 3.

The reason for this is that when the joystick is placed to the right of its center position, the

raw roll data ranges between 0.0 and 1.0. This would indicate that the pilot wishes to

accelerate to the right. The helicopter’s x axis is also positive on the right. So, the lateral

change data is directly related to lateral acceleration.

The next step in calculating the magnitude of the forward and lateral

velocity vectors is to input the change values calculated above into the acceleration

equations. These equations are as follows:

(Eq. 4)

(Eq. 5)

(Eq. 6)

In the example above, the forward change variable is negative since the pilot

wishes to decelerate. As can be seen in Eq. 4, this value is multiplied by the cosine of the

roll angle. This angle was calculated in the previous display frame and is used as a starting

point for calculating the roll angle in the current frame. The cosine of the roll angle is

multiplied by the forward change amount to reduce the amount of acceleration/deceleration

as angle of bank increases. Angle of bank is a way to describe roll angles without the use

of negative values. For example, 30 degrees of roll is the same as 30 degrees right angle of

bank. Similarly, -30 degrees of roll is 30 degrees left angle of bank.

To show why this cosine calculation is needed in the forward acceleration

calculation, assume the helicopter is rolled to the right 90 degrees. To increase the rate of

turn, the pilot pulls back on the joystick. This is a common maneuver in forward flight: roll

into an angle of bank, then pull back on the cyclic to increase the rate of turn. If the cosine

forward accel forward accel forward * cos(roll angle)∆()+=

lateral accel lateral accel lateral∆+=

lateral accel lateral accel lateral / forward speed∆()+=

36

calculation isn’t made, forward acceleration will decrease and the helicopter will decelerate

rapidly. In a real helicopter, this does not occur due to the fact that, at 90 degrees angle of

bank, pulling back on the joystick will not result in the helicopter trying to climb. It only

increases how fast it turns. By taking the cosine of the roll angle and multiplying it by the

forward change previously calculated, the effect of the forward change variable is

decreased as roll angle increases.

Once the forward change value is multiplied by the cosine of the roll angle,

this value is added to the forward acceleration value from the previous display frame. The

effect here is that acceleration of the helicopter is smooth and reacts slowly to the input

changes by the pilot.

Calculation of lateral acceleration operates in a similar manner to forward

acceleration except that there is no adjustment made as a result of roll. In Eq. 5, the lateral

change amount has its full effect on acceleration when the helicopter is flying slower than

25 miles per hour (m.p.h.). So, at low airspeeds, the helicopter can accelerate into a left or

right slide at its maximum rate. As airspeed increases above 25 m.p.h., however, the effect

of the lateral change amount on lateral acceleration is decreased by the amount of forward

airspeed, as shown in Eq. 6. This simulates the airstream acting on the fuselage at higher

forward speeds and thereby restricting lateral acceleration. Above forward speeds of 50

m.p.h., lateral speed and acceleration are set to zero to make the helicopter easier to fly for

non-helicopter pilots.

To complete the calculation of the forward and lateral vector magnitudes,

the forward and lateral accelerations, respectively, are dampened and added to the

magnitudes from the previous display frame. The equations for calculating the magnitudes,

which is the speed the helicopter will travel in its x and y axes, are as follows:

(Eq. 7)

(Eq. 8)

forward speed forward speed forward accel * 0.1()+=

lateral speed lateral speed lateral accel * 0.1()+=

37

Acceleration values are dampened in Eq. 7 and Eq. 8 before being added to

previously calculated speed values to provide realistic helicopter acceleration based on

control inputs. The magnitudes achieved from these equations are later used to scale the

forward and lateral vectors, respectively, for ultimately calculating the helicopter’s

velocity.

As seen in Figure 13, the joystick data is also used to calculate heading,

pitch and roll angles based on their values from previous display frames. No significant

changes were made to these calculations from the previous helicopter control model as the

angles calculated appear realistic enough for the model resulting from this research. The

only change to these angle calculations was to add the capability to use rudder pedals, as

explained in the following section.

b. Rudder Pedal Input

Raw data from the rudder control pedals varies from -1.0 (left pedal full

forward) to 0.0 (pedals centered) to 1.0 (right pedal full forward). This data is used to

calculate heading only, as shown in Figure 14. On the ground or at slow airspeeds (less than

25 m.p.h.), raw data from the rudder pedals manipulates the heading angle from the

previous display frame. This allows the helicopter to rotate around its z axis.

At airspeeds higher than 25 m.p.h., raw rudder information is combined

with heading and roll angle data, raw pitch data from the joystick, and the calculated

forward airspeed to calculate the new heading. Most elements of this calculation are from

the original helicopter control model. The last part of the equation (raw rudder data/

airspeed) has the effect of changing the heading based on how far a rudder pedal is pushed

in. Pushing the left pedal forward halfway, for example, causes the helicopter to execute a

moderate rate of turn to the left. Pushing the left pedal all the way forward, however.

38

Dividing the raw rudder data by the calculated forward speed reduces the

rate of turn as forward airspeed increases. For example, if the left pedal is pushed all the

way forward at 30 m.p.h., the helicopter executes a moderate turn to the left. Then the

helicopter is flying at 180 m.p.h. though, the same pedal position results in a very slow rate

of turn.

c. Throttle Input

Raw throttle data is used to calculate the amount of thrust produced by the

main rotor of the helicopter, which represents the magnitude of the thrust vector, as shown

in Figure 15. The data ranges from 0.0 in the rearward position to 1.0 in the forward

position. This data is multiplied by a constant representing the maximum amount of thrust

can be achieved, as shown in the following equation:

(Eq. 9)

Raw rudder
pedal data

(-1.0 to 1.0)

Heading
angle

Euler
matrix

(heading, pitch,
roll angles)

Figure 14: Rudder Pedal Data Flow

thrust setting raw throttle * 40,000() forward speed * 111.1()–=

39

By multiplying the raw throttle data by 40,000, the maximum thrust

available, the thrust produced is then a percentage of the maximum. For example, having

the throttle at the halfway position results in raw throttle data of 0.5. After multiplying this

by the maximum thrust available, the thrust produced is 20,000 pounds.

The additional adjustment made to the thrust setting, shown in Eq. 9,

reduces the amount of thrust produced as airspeed increases. This is done to simulate

maximum forward airspeed in level flight. The SH-60B can achieve about 180 m.p.h. in

normal level flight. To simulate maximum forward airspeed in level flight, the thrust

produced by the helicopter must equal the weight at the maximum airspeed. This condition

will result in the helicopter being flown at maximum speed with maximum power applied

while maintaining its current altitude. If the pilot flies the helicopter any faster by pushing

the joystick forward to pitch the nose down, the resultant thrust produced will decrease to

less than 20,000 pounds. Therefore, the helicopter will descend. Also, since the throttle is

already at maximum, a climb cannot be initiated by adding power to produce more thrust.

The only way to climb in this situation is to pull back on the joystick thereby pitching the

Raw throttle
data

(0.0 to 1.0)

Figure 15: Throttle Data Flow

Thrust
setting
(vector

magnitude)

40

helicopter’s nose up. The helicopter will climb from its increase in angle of attack to the

oncoming airflow, but airspeed will also decrease.

To reduce the thrust produced at maximum forward airspeed to a point

where it equals the weight of the helicopter, a constant factor, when multiplied by the

airspeed, is subtracted from the thrust calculation resulting from the throttle position. This

is shown in Eq. 9. The constant 111.1 produces this result. It is calculated from the

following equation:

(Eq. 10)

This constant affects flight at any airspeed, not just flight at maximum

forward level flight airspeed. The effect this calculation has on helicopter control is that as

it flies at a faster airspeed, more power is required to maintain altitude. This adds realism

to the simulation of the helicopter as well as limit the forward speed in level flight.

2. Vector Calculations

Once the magnitudes of the forward speed, lateral speed and thrust vectors in Figure

11 have been calculated based on control inputs, their directions need to be calculated. This

is accomplished using the heading, pitch and roll angle calculations and the Performer

function pfMakeEulerMat(). This function takes the heading, pitch and roll angles and

transforms them into a 4-by-4 matrix representing the amount of rotation in world

coordinates about an object’s x, y and z axes [HART94].

Once the matrix is formed, another Performer function,pfXformPt3(), is used to

transform the matrix into the forward velocity, lateral velocity, and total lift vectors, shown

in Figure 16. This function transforms a vector expressed in the object’s coordinate system

into a vector expressed in world coordinates [HART94]. It is used here to transform the x,

y and z axes in the helicopter’s coordinate system to the same axes expressed in world

coordinates. The helicopter’s x axis is the lateral velocity vector, its y axis is the forward

velocity vector, and its z axis is the thrust vector.

constant helicopter weight (lbs)
maximum forward speed (mph)
--=

41

The next step is to normalize these vectors using the Performer function

pfNormalizeVec3(). This function scales a vector to unit length [HART94]. It is used here

to make the forward velocity, lateral velocity, and thrust vectors a uniform length to then

scale them to the desired magnitudes as previously calculated.

Euler
matrix

(heading, pitch,
roll angles)

Forward
speed

Lateral
speed

(vector
magnitude)

(vector
magnitude)

Lateral
velocity
vector

Forward
velocity
vector

TOTAL
VELOCITY
VECTOR

Weight
vector

Figure 16: Total Velocity Vector

Thrust
vector

Thrust
setting
(vector

magnitude)

42

Next, each vector is scaled to its respective magnitude, shown in Figure 16, using

thepfScaleVec3() Performer function. The thrust vector is scaled to the thrust setting, the

forward velocity vector is scaled to the forward speed, and the lateral velocity vector is

scaled to lateral speed. These vectors now represent their respective vectors in Figure 11.

3. Weight Vector

The fourth vector in Figure 11 is the weight vector. This vector always points down

from the center of the helicopter in the negative z axis of the world coordinate system. This

is accomplished by usingpfScaleVec3() to scale the world’s z axis vector of unit length,

which is the vector <0, 0, -1>, to the constant representing the helicopter’s weight, which

is set to 20,000 pounds. Since this vector always points to the ground, it is not transformed

from the 4-by-4 Euler matrix.

4. Velocity

The final step in calculating the helicopter’s motion is to calculate the velocity

vector. This is done by adding the thrust, weight, forward velocity and lateral velocity

vectors to obtain the total speed and direction of the helicopter.

The first step here is to use the Performer functionpfAddVec3() to add the forward

velocity and lateral velocity vectors into a temporary vector. This represents the velocity in

the helicopter’s x-y plane and is later added to the thrust and weight vectors to obtain total

velocity

This same function is used to add the thrust and weight vectors. The result

represents the total force produced by the main rotor. This resultant vector, labeled total lift,

determines whether the helicopter climbs or descends. Since the helicopter’s pitch and roll

angles determine the direction of the total lift vector, as shown in Figure 3, its vertical

component (effective lift), must counteract the helicopter’s weight. If the effective lift is

greater than the helicopter’s weight, it will climb; if it is less than the weight, the helicopter

descends. If they are the same, the helicopter will maintain its altitude.

43

The next step is to scale the total lift vector just calculated usingpfScaleVec3(). The

total lift vector represents the force produced by the helicopter’s main rotor. To translate

force into acceleration, Eq. 1 is used. To translate the total lift vector into acceleration, it

must be scaled by the inverse of the helicopter’s mass, a constant defined at compile time.

This has the effect of shortening the total lift vector without changing its direction. This

resultant vector is scaled again withpfScaleVec3() by time, the elapsed time between the

last display frame and the current one, to change acceleration into velocity. The total lift

vector now represents the motion of the helicopter resulting from the lift produced by the

helicopter to counteract its weight.

Finally, the temporary vector representing the helicopter’s x-y plane velocity and

the total lift vectors are added usingpfAddVec3(). This velocity is then used to calculate the

helicopter’s position in the world coordinate system for the next display frame.

To make the helicopter easier to fly, limits were programmed into this system to

prevent the helicopter from flying to fast sideways or backwards. An SH-60B is limited to

flying at about 40 m.p.h. in sideways or rearward flight [NTPS90]. The reason for this limit

is to prevent damage to the helicopter resulting from extreme aerodynamic situations. The

programmed limit is therefore 40 m.p.h. for both sideways and rearward flight. Limiting

the program makes the simulated helicopter easier to control for inexperienced users and

prevents flight in unusual aerodynamic situations, which are beyond the scope of this

research.

5. Ground Motion

The main difference between calculation of motion when the helicopter is on the

ground versus when it is in the air is that there can be no sideways motion. This is due to

the helicopter’s landing gear, which only allows it to travel forwards and backwards. As a

result, no lateral speed need to be calculated.

As for the forward motion calculations, the aerodynamics that apply to a helicopter

in flight also apply to one operating on the ground. Forward motion is caused by creating

∆

44

enough effective thrust, shown in Figure 3, to overcome the drag caused by the contact of

the landing gear with the ground. To move forward then, power must be added and forward

pitch must be applied.

Real helicopters have brakes to slow down and stop while on the ground. However,

since the rudder pedal controls utilized for this research have no brakes equivalent, the

effect must be simulated through other means. This was accomplished by programming

pitch inputs from the joystick to control acceleration. To slow down or stop, the joystick

must be pulled back and the throttle increased.

Heading control on the ground is the same as it is in the air, and that is by tail rotor

control through rudder pedal input. Helicopter’s do not have directly steerable wheels like

automobiles do. Instead, the force produced by the tail rotor is quite sufficient to change the

helicopter’s heading since the torque produced by the main rotor, described in Chapter III,

is still present. For this reason, the raw data from the rudder control pedals controls heading

on the ground just as it does in a hover.

To protect the landing gear from damage, real helicopters are restricted from going

above certain speeds while on the ground. The ground speed limit for the SH-60B is about

45 m.p.h., which is also the programmed limit for speed on the ground [NTPS90]. This

gives the user adequate control and realism without subjecting the helicopter to extreme

situations. These kinds of situations can cause serious damage to helicopters, and

simulating this is beyond the scope of this research.

In addition, moving backwards on the ground is not permitted. Although most

helicopters can taxi backwards easily, it is not practiced. There are two reasons for this. The

first reason is that since helicopters don’t have rear windshields like automobiles do, it is

impossible for the pilot to see behind the helicopter to prevent colliding with anything.

Secondly, to taxi backwards, the pilot must pull back on the cyclic and add power from the

collective. Since doing this causes the main rotor system to pitch back, the possibility exists

for the main rotor blades to impact the rear portion of the fuselage.

45

If the pilot flying this simulated helicopter lands while moving faster than the

maximum forward ground limit or backwards, the helicopter is programmed to speed up or

slow down gradually until ground speed is within limits. Flight can be achieved again,

however, before the speed is in limits.

C. SUMMARY

The purpose of this portion of this research was to give helicopters in NPSNET the

same controllability that real helicopters have. Due to the aerodynamic complexity of real

helicopters, though, a completely physically based model was neither attempted nor

desired. The purpose here is twofold. First, NPSNET must still be used by anyone,

including those with no helicopter piloting experience, while giving the user some idea of

what it takes to fly a real helicopter. The previous method of helicopter control gave users

adequate control of a helicopter, but sacrificed too much realism to be a useful indicator of

helicopter flight.

The second purpose behind this design is to execute realistic control of the

helicopter without requiring special hardware to make complex calculations. Since

NPSNET is designed to run on commercial off-the-shelf computer systems, the blade

element method to calculate helicopter aerodynamics is too computationally expensive to

be useful in NPSNET. The simpler balance of forces method provides enough realism to

the simulation without sacrificing speed or usability.

46

47

VI. INTERFACE FOR MULTIPLE WORKSTATION ASW

A. INTERFACE PANEL DESIGN

As mentioned in Chapter II, the Panel interface designed by Chris McMahan

provides a useful starting point to implement an ASW interface. This chapter describes the

shortcomings of the original system and the changes made to the system for this research

to provide ASW functionality.

B. COMMUNICATION WITH NPSNET

1. Original Implementation

Communications between the interface Panel and a workstation running NPSNET

in remote mode are conducted through a single socket structure. This structure, called a

GUI_MSG_DATA packet, is shown in Figure 18. This packet is used to pass control and

weapons information between NPSNET and the Panel across the network.

The proper use of this packet is shown in Figure 19. In this case, one Panel is being

used in conjunction with one workstation running NPSNET in remote mode. Remote mode

means that the Panel displays velocity and position information about the NPSNET vehicle,

herein called the host vehicle, and can be used to control that vehicle. This mode is turned

on when NPSNET is initialized with the “-r” command line switch. This allows NPSNET

and the Panel to communicate by passing the GUI_MSG_DATA packet over the network.

48

Figure 17: Interface Panel in
ASW Helicopter Mode

49

 typedef struct {

 double status;
 unsigned short type;
 unsigned short length;

 // throttle data required to read the throttle position (-1.0 to 1.0) and to
 // set the throttle input with the scale widget
 float throttleSetting;

 // joystick data required to read the joystick position and set input as required
 // (each is between -1.0 and 1.0)

 float joystickX;
 float joystickY;

 // vehicle settings read from NPSNET only (not sent from interface)
 float positionX;
 float positionY;
 float positionZ;

 float altitude;
 float heading;
 float pitch;
 float roll;
 float velocity;

 float gunAzimuth;
 float gunElevation;

 EntityID vehicleID;

 // flag settings to execute NPSNET actions
 EntityID targetVehicleID;
 BYTE attachMode; // including tether, attach, target,teleport
 BYTE weaponsMode; // including primary, secondary,tertiary, targetingEnable
 BYTE hudMode; // including hudEnable
 BYTE environmentMode; // including fogEnable, wireframeEnable, textureEnable,
 // cameraEnable

 // variable settings to control NPSNET functions
 BYTE fogSetting;
 BYTE hudSetting;

 //NEW - data passed to NPSNET about FTP use and position
 int FTPon;
 float FTPXposit;
 float FTPYposit;

 } GUI_MSG_DATA;

Figure 18: GUI_MSG_DATA structure

50

The use of this method fails when more than one workstation is running NPSNET

in remote mode, as shown in Figure 20. In this example, Workstations #2 and #3, each

running NPSNET in remote mode, both communicate to the Panel application through the

passing of GUI_MSG_DATA packets over the network. The Panel becomes unusable

since conflicting information is received from different NPSNET host vehicles. In addition,

if the Panel sends controlling information to NPSNET, it is possible for the host vehicles

being simulated on Workstations #2 and #3 to be controlled by the one Panel on

Workstation #1. This is generally not a realistic scenario: one person cannot drive two

separate vehicles.

The situation becomes even more confusing when there are multiple interface

Panels and multiple workstations running NPSNET in remote mode, as in Figure 21. Each

panel could control both NPSNET host vehicles, and each Panel receives conflicting

GUI_MSG_DATA information from both host vehicles.

Panel

Workstation #1

interface

Workstation #2 Workstation #3

NPSNET
(remote
mode)

NPSNET
(not in remote

mode)

Figure 19: Single Panel/Single NPSNET
Cooperation

51

Panel

Workstation #1

interface

Workstation #2 Workstation #3

NPSNET
(remote
mode)

NPSNET
(remote
mode)

Figure 20: Single Panel/Multiple NPSNET
Problem

Panel

Workstation #1

interface

Workstation #2 Workstation #3

NPSNET
(remote
mode)

NPSNET
(remote
mode)

Panel

Workstation #4

interface

Figure 21: Multiple Panel/Multiple
NPSNET Problem

52

2. Exclusive Two-way Communication with NPSNET

As described in Chapters III and IV, helicopter ASW is conducted through the

utilization of each member of the helicopter’s crew. Each crewmember performs specific

functions while supplementing the duties of fellow crewmembers.

The functionality of the interface Panel provides an adequate framework to model

helicopter ASW. However, to model the crew coordination concept, it is necessary that one

Panel communicate with one NPSNET host vehicle, regardless of how many workstations

are running NPSNET in remote mode.

The approach taken to accomplish this was to have one NPSNET workstation

running in remote mode cooperate with one Panel, as shown in Figure 22. Each workstation

supplies address information to the GUI_MSG_DATA packets it generates. When either

workstation receives the packets, it compares the address information in the packet to the

address information stored in the program about which workstation it is cooperating with.

If the addresses match, the state of the respective program is updated. Otherwise, the

GUI_MSG_DATA packets are discarded.

Panel

Workstation #1

interface

Workstation #2

NPSNET
(remote
mode)

(-s Workstation #2)

Panel

Workstation #4

interface

Workstation #3

NPSNET
(remote
mode)

(-s Workstation #3)

Figure 22: Desired Multiple Panel/Multiple
NPSNET Cooperation

53

a. Communication from the Interface Panel to NPSNET

The first step to accomplish this was to change how the interface panel is

initialized so that a specific workstation could be designated as the cooperative

workstation. This designated workstation will run NPSNET in remote mode, and it is the

only workstation which the Panel will communicate with. A new command line

initialization switch was implemented to supply the necessary workstation identification

information to the Panel at start-up.

To initialize the Panel in this mode, the new switch uses the character ‘s’ to

designate a session. The syntax of the switch is “-s <workstation name>”. When the name

of a valid workstation is supplied, the identification information allows both NPSNET and

the Panel to filter out unwanted GUI_MSG_DATA packets from other workstations. The

workstation name is read from the command line at initialization and then verified in the

datafiles/hosts.dat file, an example of which is shown in Figure 23. The two pieces of

applicable information are the second and third fields of the file, indicating the site number

(all 36 in the example) and the host number (the number following 36). This information is

stored in the variable “npsnetAddress.address.site” and “npsnetAddress.address.host”,

respectively, as part of the GLOBAL_DATA structure defined inglobal.h.

After initialization of the Panel in complete, it can now communicate with

the desired workstation running NPSNET in remote mode by passing the

GUI_MSG_DATA packet. When a change is made to the Panel’s state that requires a

similar change of state in NPSNET, the applicable data is sent to the Message class of the

Panel [MCMA95]. The Message class then generates a GUI_MSG_DATA packet, writing

the applicable information to the appropriate field of the packet. The last step performed by

the Message class is to write the “npsnetAddress.address” data field to the “vehicleID”

field of the GUI_MSG_DATA packet and write the packet to the network. This is

performed in Message::writeSocket(), seen in Appendix B beginning on line 5.

54

When any NPSNET workstation running in remote mode receives this

packet, it first compares the “vehicleID” field in the packet with its own identification

information, which is obtained from the samehosts.dat file used by the Panel. This is

performed in the main application loop of NPSNET in the source filemain.cc, shown in

Appendix A beginning on line 9. If there is a GUI_MSG_DATA packet available to be

read, and if the “vehicleID.address” field of the packet matches the workstation’s own

 bessie 36 1 ec0
 betsie 36 2 ec0
 black 36 3 ec0
 bond 36 4 ec0
 bossie 36 5 ec0
 bradley 36 6 ec0
 clancy 36 7 ec0
 clarabell 36 8 ec0
 cool 36 9 ec0
 daisy 36 10 ec0
 dude 36 11 ec0
 elsie 36 12 ec0
 elvis 36 13 et0
 fletch 36 14 ec0
 gnarly 36 15 ec0
 grant 36 16 ec0
 gravy1 36 17 ec0
 gravy2 36 18 ec0
 gravy3 36 19 et0
 gravy5 36 20 et0
 holmes 36 21 ec0
 like 36 22 ec0
 meatloaf 36 23 et0
 medusa 36 24 ec0
 minotaur 36 25 ec0
 patton 36 26 ec0
 pershing 36 27 ec0
 rambo 36 28 ec0
 ridgeway 36 29 ec0
 totally 36 30 ec0
 trouble 36 31 ec0
 turing 36 32 ec0
 chaos 36 33 ec0
 federation.arl.mil 36 34 et0
 orion.arl.mil 36 35 et0
 hred-iport3.arl.mil 36 36 et0
 hred-iport2.arl.mil 36 37 ec0

Figure 23: Examplehosts.dat File

55

“DIS_address”, the rest of the information in the packet is assigned to the appropriate place

to update the NPSNET host vehicle’s state. If the GUI_MSG_DATA “vehicleID.address”

field does not match the workstation’s own address information, the packet is discarded.

The situation described here is initiated when the Panel has remote control

of the NPSNET host vehicle and any control input changes are made. This includes

weapons fire information and the newly implemented Fly-to-Point data, both described

later in this chapter. This filtering of GUI_MSG_DATA packets now allows one Panel to

cooperate with a host vehicle being simulated on one workstation, while other Panels

communicate with their own NPSNET host vehicles. This operates as shown in Figure 22.

b. Communication from NPSNET to the Interface Panel

The previous section described the situation where the interface Panel sends

control information to NPSNET running in remote mode. NPSNET also sends the

GUI_MSG_DATA packet to the Panel when the host vehicle changes its state. This is

necessary when the host vehicle changes any data that gets repeated on the Panel’s display,

including heading, pitch, roll, position, velocity, and altitude.

To maintain the capability shown in Figure 22, the Panel must also filter out

any GUI_MSG_DATA packets it receives from unwanted NPSNET workstations running

in remote mode. This is done in a similar manner as when the Panel generates the packets

for NPSNET, with the exception that NPSNET puts its own address information into the

packet’s “vehicleID.address” field.

In each cycle of NPSNET’s main application loop, every field of the

GUI_MSG_DATA packet that involves control data is updated with the host vehicle’s

appropriate information, shown in Appendix A starting on line 82. As can be seen on lines

94 an 95, the workstation’s own address information is written to the “vehicleID.address”

field of the GUI_MSG_DATA packet. After five cycles of the main application loop, the

latest packet to be updated is sent to the network.

56

When the Panel receives a GUI_MSG_DATA packet from NPSNET, it first

compares the “vehicleID.address” field of the packet with the “nspnetAddress.address”

variable assigned upon initialization and mentioned in the previous section. This is shown

in the readSocket() function beginning on line 26 of Appendix B. If the address information

matches, the packet was sent from the cooperating workstation that was designated with the

“-s” switch. Therefore, the packet is sent to the appropriate Panel classes to update any

displayed data, just as had been done in the Panel’s original implementation [MCMA95].

However, if the addresses differ, the packet is discarded and the Panel’s display is not

updated.

With this, the two-way exclusive communication that was the goal of this

research and illustrated in Figure 22 has been achieved. Both NPSNET and the Panel get

updated by receipt of GUI_MSG_DATA packets addressed to or from the desired

workstation while all others are discarded.

C. GUI_MSG_DATA PACKET UTILIZATION FOR ASW

Two of the duties listed in Chapter IV required by the ATO in an ASW helicopter

are to navigate to target areas for employment of sensors and weapons, and to direct

sonobuoy and weapon delivery. These duties require communication between the pilot,

who is flying the helicopter, and the ATO. This crew coordination must be conducted

efficiently to adequately prosecute a submarine threat.

With the two-way exclusive communication implemented between the interface

Panel and NPSNET, the crew coordination concept can now be modelled. By incorporating

navigation and ASW weapons delivery functionality into the Panel, the functions

performed by the ATO are simulated. The data generated by the ATO is transmitted to the

selected NPSNET workstation operating in remote mode to simulate crew coordination.

Host vehicle data is also transmitted from the pilot’s workstation back to the ATO’s Panel

so the ATO can back up the pilot in maintaining safety of flight. All of this is performed

through the use of the GUI_MSG_DATA packet.

57

1. Fly-to-Point Navigation

The way the ATO informs the pilot where to fly the helicopter is through the use of

fly-to-points (FTP). During an ASW mission, the ATO decides where to deploy sonobuoys

and launch weapons. The location he decides on is a precise location based on the tactics

used to prosecute the submarine. The ATO enters FTP information onto his tactical display

as a prioritized list of locations. The highest priority FTP is the one the pilot will fly to next.

The information regarding this FTP is displayed to the pilot as a heading cursor on

his compass. The pilot turns the helicopter until its heading and the heading to the cursor

are the same. Once the helicopter reaches this FTP, the point disappears, which is called

capturing the FTP. The ATO can then launch a sonobuoy or weapons as he desires. The

pilot also gets information about the FTP with the next highest priority after capturing the

current one.

To model this functionality, the ability of the ATO to designate FTP’s on the Panel

and communicate their location to the pilot’s NPSNET workstation was implemented. This

is shown in Figure 24. The left side of the figure shows the radar display of the Panel, which

is used as the ATO’s tactical display. It shows the helicopter in the center, with a line from

its center pointing down and to the left to indicate the helicopter’s heading. The two

triangles are FTP’s, with the one below the helicopter having highest priority and the one

above having a lower priority. The right side of the figure shows the compass on the heads-

up display (HUD) for this same helicopter in NPSNET. The ‘*’ next to the ‘S’ indicates to

the pilot which way to head to capture the FTP, in this case, to turn left from heading 234.

How the ATO enters FTP information onto the display is shown in the next chapter.

When the ATO enters an FTP onto the Panel’s radar, the function

Message::FTPChanged() is called, which generates a GUI_MSG_DATA packet to notify

the pilot where to go. The FTP location information is written in world coordinates to the

“FTPxposit” and “FTPyposit” fields of the GUI_MSG_DATA packet, seen at the bottom

of Figure 18. The packet is then sent to NPSNET over the network as described earlier.

58

When the pilot’s NPSNET workstation receives the packet, the FTP position data

is written to the FTP data fields of the PASS_DATA structure defined indraw.h in the

source code of NPSNET. This assignment is shown on lines 39 through 41 in Appendix A.

This data is then used by the vehicle_hud_draw() function in NPSNET’svehicle.cc to

display the heading cursor on the pilot’s compass. This data is displayed until the FTP is

captured or the ATO deletes this FTP or designates a new one on the radar display of the

Panel.

2. Weapons Delivery

Once the ATO has communicated to the pilot where to fly the helicopter, it is up to

the ATO to launch weapons and sonobuoys, as described earlier. Since weapons in

NPSNET are themselves entities, generation of the weapon is handled by the vehicle’s

workstation, which sends DIS entity state, fire, and detonation PDU’s regarding the

weapon to the other vehicle’s participating in the simulation.

b) NPSNET HUD displaya) Panel radar display

Figure 24: Communication of FTP
Information

59

To model this capability, use of the GUI_MSG_DATA packet is again needed.

When the ATO generates a torpedo or missile launch from the weapons buttons on the

Panel, shown in Figure 17, a GUI_MSG_DATA packet is generated by calling the weapon

launch functions of the Message class. These are shown in Appendix B beginning on line

155. The data sent to NPSNET is in the form of a byte called “weaponsMode” in the

GUI_MSG_DATA packet, as seen in Figure 18. It specifies whether to launch the vehicle’s

primary, secondary or tertiary weapon. The packet is then sent onto the network.

When the NPSNET workstation meant to get the packet receives it, the

“weaponsMode” byte value is stored in a variable called “the_button”, seen on line 21 of

Appendix A. If the vehicle type is an ASW helicopter, then “the_button” is compared with

constants defining primary, secondary, or tertiary weapons. Whichever value matches, a

firebuttonhit() function call is made to the Munitions class in NPSNET, and the appropriate

weapon is fired just as if the person at the flight controls launched it.

Since the ATO generally launches the torpedoes or missiles in an SH-60B

helicopter, the capability was given to have the ATO running the Panel be able to launch

weapons even if the pilot operating the vehicle in NPSNET has flight control over the host

vehicle. This simulates additional crew coordination functionality between the pilot and

ATO. The pilot also still has the ability to launch weapons from buttons on the flight

controls or from the keyboard.

D. SUMMARY

The communications conducted between the interface Panel and NPSNET prior to

this research contained adequate framework to simulate crew coordination. By

programming both the Panel and NPSNET to filter out unwanted GUI_MSG_DATA

packets, a single Panel can now communicate with a single NPSNET entity while other

Panels operate in conjunction with their entities. These crew coordination concepts are

shown through the added capability of passing FTP data from the Panel to the NPSNET

entity, and through the flight data passed from the entity to the Panel for display.

60

61

VII. ASW SYSTEM DESCRIPTION

A. INTRODUCTION

This chapter describes the ASW functionality added to NPSNET and the interface

Panel, including a description of the radar display, how to enter and manipulate Fly-to-

Points (FTP), how sonobuoys are modelled, and how to launch torpedoes and missiles. The

ASW functionality is available only when NPSNET and the interface Panel are initiated in

the correct mode. NPSNET must be initialized as an SH-60B helicopter in remote mode as

the host vehicle. This is accomplished by including the “-v” command line switch with

“sh60” as its argument. Remote mode is turned on by including the “-r” switch at

initialization, which allows NPSNET to send and receive GUI_MSG_DATA packets.

To activate the ASW functionality in the interface Panel, it must be initialized in

session mode with the “-s” command line switch with the name of the host vehicle’s

workstation as its argument, as described in Chapter VI. For example, if we want to control

the NPSNET host vehicle on the workstation “elvis”, initialized as described above, then

the Panel must be initialized from another workstation with the argument “-s elvis”. This

allows the Panel to send and receive GUI_MSG_DATA packets, and enables packet

filtering for both NPSNET and the Panel, also described in Chapter VI. Other ASW

functionality is activated by selecting “ASW Helo” from the Vehicle menu of the Panel.

This enables FTP and sonobuoy functionality. Figure 17 shows the Panel in ASW

Helicopter mode.

B. PANEL RADAR DISPLAY

The ATO in an SH-60B has a tactical display used for viewing sensor data,

managing sonobuoys, entering FTP’s, and controlling the tactical conduct of a mission.

This display, shown in Figure 6, is graphical in nature, giving the ATO a picture of the

ASW situation.

62

The SH-60B tactical display is simulated in this research through the use of the

radar display on the interface Panel. The basic functionality from the original

implementation of the Panel remains largely unchanged [MCMA95]. Its function is to

display the location of entities in the virtual environment relative to the host vehicle’s

location. The center of the radar display represents the location of the host vehicle. All other

entities, whose locations are determined from DIS Entity State PDU’s received from the

network, are shown on the radar as icons representing the vehicles’ type.

One significant change made to the radar display of the Panel was its orientation.

Originally, the heading of the host vehicle determined the radar’s orientation, with the

vehicle’s heading pointing up. So, the radar picture rotated as the host vehicle turned. This

was an unrealistic depiction of a radar’s display, and can get confusing for the user. Real

radar displays are oriented such that north points up on the radar’s display. When the

vehicle turns, the display stays oriented towards north and the iconic representation of the

vehicle turns. The icon indicates the heading of the helicopter with a small line inside of the

icon.

To simulate this, the rotating functionality of the Panel’s radar display was

removed. As a result, north points up on the display regardless of vehicle heading. To

indicate the host vehicle’s heading, a small line is drawn from the center of the radar

pointing in the direction of the host vehicle’s heading. This can be seen in Figure 25, which

shows that the host vehicle’s heading is about southwest.

Additional functionality was added to the Panel’s radar display to allow for the

display and management of FTP’s and sonobuoys. The source code for the Radar class of

the interface Panel is contained in Appendix C and Appendix D.

1. Fly-to-Point Management

FTP’s are navigational aids used by the ATO to tell the pilot where to fly the

helicopter. They are used in ASW to indicate locations for sonobuoy and weapons

deployment.

63

In the interface Panel, FTP’s are entered and displayed in the radar display, as

shown in Figure 25. Each FTP is displayed as a triangle with a number inside indicating its

priority. Up to six FTP’s can be entered on the radar display. Source code for displaying,

entering, deleting, and capturing FTP’s is contained in Appendix C and Appendix D.

a. Entering FTP’s

Entering FTP’s onto the radar display is made possible by turning on the

FTP toggle button, as shown in Figure 17. New FTP’s appear on the radar display at the

mouse pointer’s position when the left mouse button is pressed in the radar’s display area.

If there are a maximum number of FTP’s in the system, in this case six, no more can be

entered until one of the existing FTP’s has been deleted or captured.

Figure 25: FTP Example

64

As mentioned earlier, each FTP also has an associated priority, which

indicates the order in which the FTP’s should be flown to. Newly entered FTP’s have the

lowest priority of those in the system. For example, if there are three FTP’s currently

entered into the system, the next FTP will have priority 4, assuming that none of the original

FTP’s gets deleted from the system before the new one is entered. If there are no FTP’s

currently in the system, the new FTP will have priority 1.

The significance of the highest priority FTP (priority 1) is that it is the

position selected by the ATO for the next sonobuoy or weapon launch. As such, it is the

only FTP whose position is transmitted to the host vehicle, which is described in Chapter

VI.

b. Capturing FTP’s

When the helicopter gets within a certain distance of the highest priority

FTP, it is deleted from the system, signifying that the position the ATO wanted the pilot to

fly to has been reached. This distance is calculated as a horizontal distance since FTP’s are

not based on altitude. The maximum distance this can occur is defined at compile time to

be 500 yards. Hence, when the helicopter gets within 500 yards of the priority 1 FTP, it is

captured. Only the priority 1 FTP can be captured.

After capturing the priority 1 FTP, the priorities of any other FTP’s in the

system are increase by one. So, if the priority 1 FTP in Figure 25 is captured, it is removed

from the radar display, and the priority of the priority 2 FTP becomes priority 1, whose

location is then transmitted to the NPSNET host vehicle. In addition, if there are six FTP’s

in the system prior to one being deleted or captured, then there are five FTP’s after. In this

case, another FTP can then be added to the system, as described earlier.

As stated before, FTP’s denote the locations where the ATO wishes to drop

sonobuoys or torpedoes. One of the capabilities of the SH-60B is that it can automatically

launch sonobuoys upon the capture of an FTP. To simulate this, the Panel automatically

65

inserts a sonobuoy into the system when capturing an FTP. Sonobuoy use is described later

in this chapter.

c. Deleting FTP’s

Occasionally, the ATO may wish to delete an FTP from the system. This is

done when the ATO wishes to reprioritize them, change their locations, or insert new ones

if the maximum number is already in the system.

Deleting FTP’s is accomplished on the Panel by first turning the FTP toggle

button off. Then, by placing the mouse pointer on a currently existing FTP and clicking the

left mouse button, the FTP disappears from the radar display. In addition, remaining FTP’s

are reprioritized, if necessary, so that the priorities of all FTP’s in the system is an

increasing sequence (i.e. no priority gaps). This is shown in Figure 26. On the left side,

there are four FTP’s with priorities 1 though 4. When the FTP with priority 2 is deleted, the

rest of the FTP’s get renumbered such that the FTP with priority 3 now has priority 2, and

the FTP with priority 4 now has priority 3.

2. Sonobuoy Usage

As described in Chapter V, sonobuoys are used to track subsurface contacts. For

this research, sonobuoys are modelled only as part of the interface Panel. The reason for

this is that, as a sensor, the sonobuoy would need to be modelled as a sensor entity in

NPSNET to provide the necessary information to other vehicles in NPSNET regarding its

characteristics. This would necessitate the use of the DIS Emission PDU, currently

unimplemented in NPSNET.

66

To model sonobuoys through the Panel, the weapons launch buttons and the radar

display are again used. This allows for entering sonobuoys into the system, displaying

sonobuoy locations, and displaying subsurface contact information. Sonobuoys are

displayed as a circle around the letter ‘S’ with a line indicating the submarine’s position, as

shown in Figure 27.

a. Entering Sonobuoys

Sonobuoys can be entered in to the system automatically or manually. Since

sonobuoys are launched from the helicopter’s current location, sonobuoys first appear in

that location. The sonobuoy remains in that location for the duration of the simulation.

To automatically enter a sonobuoy into the system, the helicopter must

capture a FTP, as described earlier. Manually launching sonobuoys is accomplished by

pressing the sonobuoy button next to the radar display. A maximum of 25 sonobuoys can

be entered into the system. There is no difference in the functionality of manually launched

sonobuoys versus those automatically launched.

a) before deleting FTP b) #2 FTP deleted

Figure 26: Deleting FTP’s

67

b. Sonobuoy Contact Information

The type of sonobuoy modelled in the interface Panel is an active sonobuoy.

As described in Chapter IV, active sonobuoys reveal bearing and distance information from

the sonobuoy to the subsurface contact by transmitting a sonar signal and receiving the

sonar echo. Due to their limited power, both active and passive sonobuoys are generally

considered short range sensors for tracking submarines.

Sonobuoys simulated in the Panel do not detect subsurface contacts by

listening for acoustic signals. This is because entities in NPSNET transmit DIS Entity State

PDU’s, which have no acoustic information. The Panel, however, receives these PDU’s to

be able to display these entities on the radar display. By extracting vehicle type and position

Figure 27: Sonobuoy Examples

68

information from the PDU’s, the Panel system knows the location of all vehicles in the

simulation, including submarines.

To display the location of a submarine relative to a sonobuoy, the distance

from the sonobuoy to the submarine is tested. To simulate the limited range of sonobuoys,

the location of a submarine is displayed only if its distance is less than 1000 yards. If it is,

a line segment is drawn from the sonobuoy to the submarine’s location. If the distance is

greater than 1000 yards, no line segment is drawn. Both of these situations are shown in

Figure 27, where the top sonobuoy is in contact with the submarine, but the bottom one is

not. In addition, the iconic representation of the submarine is not shown. This is omitted to

simulate a radar’s inability to detect subsurface vehicles and to offer the greater challenge

of locating the submarine without knowing any position information when the simulation

is begun.

Multiple sonobuoys can indicate contact with a single submarine. If one

submarine is within 1000 yards of two or more sonobuoys, lines are drawn from each

sonobuoy to the submarine, as shown in Figure 28. If there is more than one submarine

within range of a sonobuoy, only the position of the closest submarine is indicated on the

radar display.

3. Weapons Launch

Weapons can be launched in NPSNET either by the person controlling the host

vehicle in NPSNET or by the person operating the interface Panel. To launch weapons in

NPSNET, the pilot can either press the appropriate button on the joystick, or press the

appropriate button on the keyboard. This functionality was not changed for this research.

Changes were made to weapons launch functionality in the interface Panel,

however. To launch weapons from the Panel, the buttons labelled “Torpedo” and “Missile”,

shown in Figure 17, are used. At any point in the simulation exercise, the person operating

the Panel places the mouse pointer on the appropriate weapon button and presses the left

mouse button. This sends a GUI_MSG_DATA packet to the NPSNET host vehicle, which

69

launches the selected weapon. Since the ATO has the responsibility of launching weapons

in the SH-60B, the Panel can be used to launch weapons regardless of who has control of

the host vehicle in NPSNET, either the person flying the NPSNET helicopter or the person

controlling the Panel.

C. WEAPONS SIMULATION

The SH-60B has the capability to carry and launch Penguin missiles and Mk 48 or

Mk 50 torpedoes. This is simulated in a general sense in NPSNET. The SH-60B in

NPSNET has two weapons, a missile and a torpedo. The missile, representing the Penguin,

is a generic missile that can home in on a targeted vehicle. No functionality was added to

the current simulation of missiles in NPSNET in this research.

To simulate torpedoes, a new munitions class was added to NPSNET to represent

helicopter launched torpedoes. What is unique about this kind of weapon in NPSNET is

that is has two separate trajectory calculations, one for the airborne ballistic phase, and one

for the underwater homing phase. In addition, the torpedo only has the capability to home

in on and destroy ships and submarines in NPSNET.

When a torpedo is launched, an array is created containing the identification

numbers of vehicle in the current simulation that are eligible to be targeted, which are ships

and submarines. This is done to allow a quick lookup for the torpedo when trying to gain a

contact to start homing in on the target. The torpedo itself follows a ballistic trajectory until

water impact.

Once the torpedo impacts the water, the homing phase begins. If there are any

eligible targets in the simulation, the distance from the water impact point to the vehicle is

calculated. If any of these vehicles are within the torpedo’s acquisition range, defined at

compile time to be 3000 yards, the closest of these vehicles becomes the target. The torpedo

then turns toward the target. If there are no eligible vehicles in range, the current distance

from the torpedo to the eligible vehicles is checked on each display loop in case a vehicle

enters the torpedo’s acquisition range before the end of its run. If no vehicles are acquired,

70

the torpedo continues on it current heading, maintaining its last calculated pitch and roll

angles.

In addition to homing toward the closest ship or submarine, calculation of the

distance the torpedo has travelled since water impact is made on each display loop. This is

done to limit the range of the torpedo. If it has run for 2000 yards underwater without hitting

a target, the torpedo is deactivated.

D. SUMMARY

By adding ASW functionality to NPSNET and the interface Panel, crew

coordination concepts as they apply to ASW can now be practiced in simulations over a

network. The features added to simulate ASW, described in this chapter, provide to users

the ability to prosecute subsurface entities in a realistic training environment. The interface

Figure 28: Multiple Sonobuoy Contact

71

Panel, with the changes incorporated as a result of this research, now provides the

functionality to realistically simulate the warfare area of ASW.

72

73

VIII. RESULTS, CONCLUSIONS, AND FUTURE RESEARCH

A. RESULTS

The result of this research is a simulation environment that incorporates real world

concepts in ASW warfare. From the standpoint of the helicopter aircrew, realism was added

to every aspect of the simulation to allow for a more useful training environment.

The first step was to increase the realism for the pilot flying the ASW helicopter. A

full set of flight controls was implemented to allow the pilot to have full control over the

helicopter. The model of the helicopter was changed from a simple one vector

representation to a more complex four vector representation. This model uses Performer to

manipulate the vectors, so no speed is sacrificed with the increase in complexity of the

model. This gives the helicopter the ability to hover, slide left or right, and fly backwards

and forwards. The realism for the pilot is that he must maintain safety of flight by

concentrating on his flying technique, letting the other members of the aircrew handle their

own responsibilities.

Next, the interface Panel was adjusted to add realism for the ATO. By having the

Panel communicate with the host NPSNET vehicle through the GUI_MSG_DATA packet,

the ATO can communicate to the pilot his intentions for the conduct of the mission. The

pilot knows where he must fly, and once that point is reached, the ATO can deploy his

sensors and weapons as necessary to prosecute the submarine.

To allow for realistic joint training to occur, GUI_MSG_DATA packet filtering by

both NPSNET and the Panel is used. This allows each Panel to communicate with its own

NPSNET host vehicle. Several aircrews can prosecute submarines in a simulation, which

is how real world helicopter ASW would be conducted.

74

B. CONCLUSIONS

The objectives of this research were to design and construct an interface to simulate

helicopter ASW and to increase the realism of helicopter control in NPSNET. The first

objective was accomplished by adding ASW functionality to the interface Panel and

NPSNET. The second objective was accomplished by redesigning the helicopter control

model previously implemented in NPSNET. The functionality was developed and

successfully incorporated into NPSNET and the interface Panel. The following conclusions

have been reached.

• Complex control models can be incorporated into NPSNET which provide a
higher degree of realism for training pilots from a variety of airborne platforms.

• Joint training and crew coordination concepts can be simulated through the use of
a common interface panel representing a variety of vehicle types and warfare areas.
Communication between the interface and the host vehicle can be isolated so that they
communicate only with each other.

• Simulation of specific warfare areas is possible by designing weapons and
functions specific to the tactics used in that warfare area. Incorporating these into the
simulation system allows for realistic warfare training.

C. FUTURE RESEARCH

This research provides a basic foundation for continued exploration of

incorporating increased realism in NPSNET. The following is a list of topics for future

research.

• Continued development and refinement of physically-based vehicle control
models in NPSNET.

• Develop electromagnetic and acoustic sensor models and incorporate them into
NPSNET.

• Incorporate acoustic properties into ship and submarine models of NPSNET.

• Further optimization of the network communications mechanisms to enhance
speed and efficiency.

• Design and implement a larger variety of warfare area specific functions for the
Panel and NPSNET.

75

APPENDIX A. SOURCE CODE FOR NPSNET IN REMOTE
MODE (MAIN.CC)

1. #ifdef REMOTE_PANEL
2. if (G_static_data->remote_exists)
3. {
4.
5. if ((G_remote = socket_read (&rstat)) != NULL)
6. {
7.
8. //NEW - Update the control settings only if the GUI_MSG_DATA is to us
9. if ((G_dynamic_data->control == REMOTE) &&
10. (G_remote->vehicleID.address.site == G_static_data->DIS_address.site) &&
11. (G_remote->vehicleID.address.host == G_static_data->DIS_address.host))
12. {
13. the_thrust = G_remote->throttleSetting;
14. the_joy_y = G_remote->joystickY;
15. the_joy_x = G_remote->joystickX;
16. the_gunElevation = G_remote->gunElevation;
17. the_gunAzimuth = G_remote->gunAzimuth;
18. }
19.
20. // Update weapons delivery and fog modes
21. the_button = G_remote->weaponsMode;
22. the_fog = G_remote->environmentMode;
23.
24. //NEW - weapons fire and FTP info
25. if ((G_remote->vehicleID.address.site == G_static_data->DIS_address.site) &&
26. (G_remote->vehicleID.address.host == G_static_data->DIS_address.host))
27. {
28. // If the helo an SH60, let the panel fire weapons, regardless of who has control
29. if (isaswheloveh(draw_data->type))
30. {
31. if (the_button & GUI_PRIMARY)
32. firebuttonhit (PRIMARY, G_drivenveh, draw_data);
33.
34. if (the_button & GUI_SECONDARY)
35. firebuttonhit (SECONDARY, G_drivenveh, draw_data);
36. } // end if ASW helo
37.
38. //NEW - get FTP data for display to user
39. draw_data->FTP_is_on = G_remote->FTPon;
40. draw_data->FTP_X_posit = G_remote->FTPXposit;

76

41. draw_data->FTP_Y_posit = G_remote->FTPYposit;
42. } // end weps and FTP info
43.
44. } // end there was a socket to read
45.
46. // If the Panel has control, update the vehicle’s control information
47. if (G_dynamic_data->control == REMOTE)
48. {
49. control_data.thrust = the_thrust;
50. control_data.pitch = the_joy_y;
51. control_data.roll = the_joy_x;
52. draw_data->look.hpr[HEADING] = the_gunAzimuth;
53. draw_data->look.hpr[PITCH] = the_gunElevation;
54.
55. // Fire weapon if Panel has control
56. if (the_button & GUI_PRIMARY)
57. firebuttonhit (PRIMARY, G_drivenveh, draw_data);
58.
59. if (the_button & GUI_SECONDARY)
60. firebuttonhit (SECONDARY, G_drivenveh, draw_data);
61.
62. if (the_button & GUI_TERTIARY)
63. firebuttonhit (TERTIARY, G_drivenveh, draw_data);
64.
65. // If Panel in control, toggle targetting
66. if ((the_button & GUI_TARGETING) != last_state)
67. {
68. G_dynamic_data->targetting = !G_dynamic_data->targetting;
69. target_ok = G_curtime;
70. last_state = (the_button & GUI_TARGETING);
71. }
72.
73. // If panel in control, toggle fog
74. if ((the_fog & GUI_FOG) != last_fog)
75. {
76. changed.fog = TRUE;
77. last_fog = (the_fog & GUI_FOG);
78. }
79. } // end if control == REMOTE
80.
81. // Generate a GUI_MSG_DATA packet to send state info to Panel
82. if (sock_open)
83. {
84. static int loop = 0;
85. info_to_go.heading = (float) (360.0f - (draw_data->posture.hpr[HEADING]));
86. info_to_go.pitch = (float) draw_data->posture.hpr[PITCH];
87. info_to_go.roll = (float) draw_data->posture.hpr[ROLL];

77

88. info_to_go.throttleSetting = (float)control_data.thrust;
89. info_to_go.gunAzimuth = (float) draw_data->look.hpr[HEADING];
90. info_to_go.gunElevation = (float) draw_data->look.hpr[PITCH];
91. info_to_go.positionX = (float) draw_data->posture.xyz[X];
92. info_to_go.positionY = (float) draw_data->posture.xyz[Y];
93. info_to_go.positionZ = (float) draw_data->posture.xyz[Z];
94. info_to_go.vehicleID.address.site = G_static_data->DIS_address.site;
95. info_to_go.vehicleID.address.host = G_static_data->DIS_address.host;
96. info_to_go.altitude = (draw_data->altitude) * METER_TO_FOOT;
97. info_to_go.velocity = draw_data->speed;
98.
99. //NEW - info to send to panel about FTP (not really needed)
100. info_to_go.FTPon = the_FTPOn;
101. info_to_go.FTPXposit = the_FTPXposit;
102. info_to_go.FTPYposit = the_FTPYposit;
103.
104. loop++;
105.
106. // Write the socket to the network every application cycles
107. if (loop >= 5)
108. {
109. socket_write ((char *) &info_to_go);
110. loop = 0;
111. } // end loop
112. } // end if socket_open
113. } // end if remote exists
114. #endif

78

79

APPENDIX B. SOURCE CODE PANEL MESSAGE CLASS
(MESSAGE.C)

1. // ***
2. // Function to write a PDU socket. If write fails, display error message,
3. // close socket, and terminate program.
4. // ***
5. void Message::writeSocket()
6. {
7. // Set pdu entity address to the npsnet session being controlled
8. pdu.vehicleID.address.host = G_data.npsnetAddress.address.host;
9. pdu.vehicleID.address.site = G_data.npsnetAddress.address.site;
10.
11. if (socket_write((char *) &pdu) != TRUE)
12. {
13. cerr << “socket failure, write failed” << endl;
14. cerr << “Exiting program \n”;
15. socket_close();
16.
17. exit(0);
18. }
19. }
20.
21.
22. //**
23. // Function to read a PDU socket and distribute the appropriate
24. // information throughout the panel display.
25. //**
26. void Message::readSocket()
27. {
28.
29. static GUI_MSG_DATA *pdu_ptr;
30. static struct readstat rstat;
31.
32. if ((pdu_ptr = socket_read(&rstat)) == NULL)
33. {
34. // no pdu’s available to read
35. }
36. else
37. {
38. if ((pdu_ptr->vehicleID.address.host == G_data.npsnetAddress.address.host)
39. && (pdu_ptr->vehicleID.address.site == G_data.npsnetAddress.address.site))
40. {

80

41. // update the throttle
42. theThrottle->updateThrottle(pdu_ptr);
43.
44. // update the instrument component
45. theInstrument->updateInstrumentDisplays (pdu_ptr, _pickVehIndex);
46.
47. // update the radar screen
48. theViewscreen->updateScreen(pdu_ptr);
49.
50. // update the tactical map
51. theMap->updateMap(pdu_ptr);
52. }
53. }
54. }
55.
56.
57. //**
58. // Function to write a PDU socket based on throttle movement. First set
59. // the throttle variable in GUI_MSG_DATA and then write the entire
60. // socket structure.
61. //**
62. void Message::throttleChanged(int throttle)
63. {
64. pdu.throttleSetting = float(throttle)/100.0;
65. writeSocket();
66. }
67.
68.
69. //***
70. // Function to write a PDU socket based on gun azimuth movement. First
71. // set the azimuth variable in GUI_MSG_DATA and then write the entire
72. // socket structure.
73. //***
74. void Message::gunAzimuthChanged(int azimuth)
75. {
76. pdu.gunAzimuth = float(azimuth);
77. writeSocket();
78. }
79.
80.
81. //***
82. // Function to write a PDU socket based on gun elevation movement.
83. // First set the elevation variable in GUI_MSG_DATA and then write the
84. // entire socket structure.
85. //***
86. void Message::gunElevationChanged(int elevation)
87. {

81

88. pdu.gunElevation = float(elevation);
89. writeSocket();
90. }
91.
92.
93. //***
94. // Function to set the vehicle based on user selection. Function
95. // changes the global value of the index of the selected vehicle
96. // from the radar screen. The stealth display will be updated
97. // with the new value on the next timer increment within the
98. // readSocket function. No writeSocket is required, since
99. // the displayed information does not change the state of NPSNET
100. // in any way
101. //***
102. void Message::pickVehicleChanged(int index)
103. {
104. _pickVehIndex = index;
105. }
106.
107.
108. //***
109. // Function to write a PDU socket based on joystick movement.
110. // First set the values within the GUI_MSG_DATA structure for the
111. // joystick inputs, then distribute the socket to NPSNET.
112. //***
113. void Message::joystickChanged(float joystickX, float joystickY)
114. {
115. pdu.joystickX = joystickX;
116. pdu.joystickY = joystickY;
117. writeSocket();
118. }
119.
120.
121. //NEW
122. //***
123. // Function to write a PDU socket based on FTP position.
124. // First set the values within the GUI_MSG_DATA structure for the
125. // FTP, then distribute the socket to NPSNET.
126. //***
127. void Message::FTPChanged(int on, float FTPX, float FTPY)
128. {
129. // Set the pdu data fields
130. pdu.FTPon = on;
131. pdu.FTPXposit = FTPX;
132. pdu.FTPYposit = FTPY;
133.
134. // Write the pdu to the net

82

135. writeSocket();
136. }
137.
138.
139. //***
140. // Functions to write a PDU socket based on weapon selections.
141. // First set the values within the GUI_MSG_DATA structure for the
142. // weapon inputs, then distribute the sockets to NPSNET.
143. //***
144. void Message::targettingState(short state)
145. {
146. if (state) // targetting mode is on
147. pdu.weaponsMode |= GUI_TARGETING;
148. else // targetting mode is off
149. pdu.weaponsMode &= !(GUI_TARGETING);
150.
151. writeSocket();
152. }
153.
154.
155. void Message::primaryWeapon(short state)
156. {
157. if (state) // mode is on
158. pdu.weaponsMode |= GUI_PRIMARY;
159. else // mode is off
160. pdu.weaponsMode &= !(GUI_PRIMARY);
161.
162. writeSocket();
163. }
164.
165.
166. void Message::secondaryWeapon(short state)
167. {
168. if (state) // mode is on
169. pdu.weaponsMode |= GUI_SECONDARY;
170. else // mode is off
171. pdu.weaponsMode &= !(GUI_SECONDARY);
172.
173. writeSocket();
174. }
175.
176.
177. void Message::tertiaryWeapon(short state)
178. {
179. if (state) // mode is on
180. pdu.weaponsMode |= GUI_TERTIARY;
181. else // mode is off

83

182. pdu.weaponsMode &= !(GUI_TERTIARY);
183.
184. writeSocket();
185. }

84

85

APPENDIX C. SOURCE CODE PANEL RADAR CLASS
(RADAR.H)

1. #ifndef RADAR_H
2. #define RADAR_H
3.
4. #include <Vk/VkComponent.h>
5. #include <Sgm/GlxMDraw.h>
6.
7. #define MAX_FTP 6
8. #define MAX_SONOBUOYS 25
9. #define MAX_SONO_RANGE 1000.0f
10. #define FTP_CAPTURE_RANGE 500.0f
11.
12. class Radar : public VkComponent
13. {
14.
15. public:
16. Radar(const char *name, Widget parent);
17. ~Radar();
18. virtual const char *className();
19.
20. void updateRadar(float posX, float posY, float hdg);
21. void setRange(int);
22.
23. //NEW
24. void FTPState(short);
25. void sonobuoyLaunch(short);
26.
27. protected:
28.
29. void ginit(GlxDrawCallbackStruct *cb);
30. void expose(GlxDrawCallbackStruct *cb);
31. void resize(GlxDrawCallbackStruct *cb);
32. void inputFTP(GlxDrawCallbackStruct *cb);
33. void initialize_gl();
34.
35. static void exposeCallback(Widget w, XtPointer clientData, XtPointer callData);
36. static void ginitCallback(Widget w, XtPointer clientData, XtPointer callData);
37. static void resizeCallback(Widget w, XtPointer clientData, XtPointer callData);
38. static void inputCallback(Widget w, XtPointer clientData, XtPointer callData);
39.
40. void computeworldcoordinate(int, int, float *, float *);

86

41. void monitorNet();
42. void Update_map();
43. int pickVehicle();
44. void draw_stuff_on_map(void);
45. void drawBoundaries();
46.
47. //NEW - FTP/sonobuoy functions
48. void drawHeadingBug();
49. void drawSonobuoys();
50. void drawFTPs();
51. void deleteFTP(int);
52.
53. //NEW - function to compute the 2D distance between 2 points
54. float computeTheDist(float, float, float, float);
55.
56. private:
57.
58. //NEW - determines whether we are in add mode or delete mode
59. short FTP_add_mode;
60.
61. //NEW - structure for the FTP’s position
62. typedef struct
63. {
64. float x_posit;
65. float y_posit;
66. } FTP_POSIT;
67.
68. //NEW - structure for the FTP information
69. typedef struct
70. {
71. int used;
72. FTP_POSIT position;
73. } FTP_INFO;
74.
75. //NEW - array to hold all FTPs
76. FTP_INFO FTP_array[MAX_FTP];
77.
78. //NEW - structure for the sonobuoy’s position
79. typedef struct
80. {
81. float sono_x_posit;
82. float sono_y_posit;
83. } SONO_POSIT;
84.
85. //NEW - structure for the sonobuoy information
86. typedef struct
87. {

87

88. int sono_used;
89. SONO_POSIT sono_position;
90. } SONO_INFO;
91.
92. //NEW - array to hold all sonobuoys
93. SONO_INFO Sono_array[MAX_SONOBUOYS];
94. };
95.
96. extern Radar *theRadar;
97. #endif

88

89

APPENDIX D. SOURCE CODE PANEL RADAR CLASS
(RADAR.C)

1. #include <stdio.h>
2. #include <stdlib.h>
3. #include <math.h>
4. #include <stream.h>
5. #include <iostream.h>
6.
7. #include “radar.H”
8. #include “message.H”
9.
10. #include “entity.H”
11. #include “netutil.H”
12. #include “global.h”
13. #include “fonts/fontdef.h”
14. #include “constants.h”
15.
16. // Constants that define the GL state for the GL widget.
17. static GLXconfig glxConfig [] =
18. {
19. {GLX_NORMAL, GLX_DOUBLE, TRUE},
20. {GLX_NORMAL, GLX_RGB, TRUE},
21. {GLX_NORMAL, GLX_ZSIZE, GLX_NOCONFIG},
22. {0, 0, 0}
23. };
24.
25. // set up initial radar center position as center of the world
26. float centerX = (G_data.maxX - G_data.minX)/2.0;
27. float centerY = (G_data.maxY - G_data.minY)/2.0;
28. float centerHdg = 0.0;
29.
30. static short pickbuffer[MAX_VEH];
31.
32. //NEW - variables to determine which sonobuoy is next
33. static int next_Sonobuoy = 0;
34.
35. float _range = 1.0;
36. float _posX;
37. float _posY;
38. float _hdg;
39.
40. Radar *theRadar = NULL;

90

41.
42. Radar::Radar(const char *name, Widget parent) : VkComponent(name)
43. {
44. theRadar = this;
45. int count;
46. Arg args[10];
47.
48. count = 0;
49.
50. //NEW - initialize ASW mode to off
51. FTP_add_mode = 0;
52.
53. //NEW - initialize values for the FTP array
54. for(int ax = 0; ax < MAX_FTP; ax++)
55. {
56. FTP_array[ax].used = FALSE;
57. FTP_array[ax].position.x_posit = 0.0f;
58. FTP_array[ax].position.y_posit = 0.0f;
59. }
60.
61. //NEW - initialize values for the sonobuoy array
62. for(ax = 0; ax < MAX_SONOBUOYS; ax++)
63. {
64. Sono_array[ax].sono_used = FALSE;
65. Sono_array[ax].sono_position.sono_x_posit = 0.0f;
66. Sono_array[ax].sono_position.sono_y_posit = 0.0f;
67. }
68.
69. // replace the default translation table for the GlxNinputCallback
70. // with a new one that only responds to mouse button down events,
71. // rather than the default of all button and keyboard events.
72. String translations = “<BtnDown>:glxInput()”;
73.
74. XtSetArg(args[count], GlxNglxConfig, glxConfig); count++;
75.
76. // use the newly defined translation table to replace to default one
77. XtSetArg(args[count], XmNtranslations, XtParseTranslationTable
78. (translations)); count++;
79.
80. _baseWidget = GlxCreateMDraw(parent, _name, args, count);
81.
82. XtAddCallback(_baseWidget, GlxNexposeCallback, &Radar::exposeCallback,
83. (XtPointer) this);
84. XtAddCallback(_baseWidget, GlxNginitCallback, &Radar::ginitCallback,
85. (XtPointer) this);
86. XtAddCallback(_baseWidget, GlxNresizeCallback, &Radar::resizeCallback,
87. (XtPointer) this);

91

88. XtAddCallback(_baseWidget, GlxNinputCallback, &Radar::inputCallback,
89. (XtPointer) this);
90. }
91.
92. void Radar::exposeCallback(Widget, XtPointer, XtPointer callData)
93. {
94. GlxDrawCallbackStruct *cb = (GlxDrawCallbackStruct *) callData;
95.
96. GLXwinset(XtDisplay(theRadar->baseWidget()),XtWindow(theRadar->
97. baseWidget()));
98. theRadar->expose(cb);
99. }
100.
101. void Radar::ginitCallback(Widget, XtPointer, XtPointer callData)
102. {
103. GlxDrawCallbackStruct *cb = (GlxDrawCallbackStruct *) callData;
104.
105. GLXwinset(XtDisplay(theRadar->baseWidget()), XtWindow(theRadar->
106. baseWidget()));
107. theRadar->ginit(cb);
108. }
109.
110. void Radar::resizeCallback(Widget, XtPointer, XtPointer callData)
111. {
112. GlxDrawCallbackStruct *cb = (GlxDrawCallbackStruct *) callData;
113.
114. GLXwinset(XtDisplay(theRadar->baseWidget()), XtWindow(theRadar->
115. baseWidget()));
116. theRadar->resize(cb);
117. }
118.
119. void Radar::inputCallback(Widget, XtPointer, XtPointer callData)
120. {
121. //NEW - The panel is in ASW vehicle mode and new FTP’s are to be added,
122. // so make the inputFTP callback
123. GlxDrawCallbackStruct *cb = (GlxDrawCallbackStruct *) callData;
124. GLXwinset(XtDisplay(theRadar->baseWidget()), XtWindow(theRadar->
125. baseWidget()));
126. theRadar->inputFTP(cb);
127.
128. // We can’t add FTP’s, so change the pick vehicle for stealth
129. theMessage->pickVehicleChanged (theRadar->pickVehicle());
130.
131. }
132.
133.
134. //**

92

135. void Radar::ginit(GlxDrawCallbackStruct *)
136. {
137. setRange(100);
138. initialize_gl();
139.
140. // wait until the gl window is initialized to start drawing to
141. // it within the timer loop, otherwise ...core dump...
142. theMessage->_timer->start();
143.
144. // start listening to the net for entities to display
145. theRadar->monitorNet();
146. }
147.
148. Radar::~Radar()
149. {
150. // Empty
151. }
152.
153. const char *Radar::className()
154. {
155. return “Radar”;
156. }
157.
158. //**
159. void Radar::expose(GlxDrawCallbackStruct *)
160. {
161. updateRadar(G_data.world_x_size/2.0, G_data.world_y_size/2.0, 0.0);
162. }
163.
164. //**
165. void Radar::resize(GlxDrawCallbackStruct *cb)
166. {
167. viewport(0, (Screencoord) cb->width-1,
168. 0, (Screencoord) cb->height-1);
169. updateRadar(G_data.world_x_size/2.0, G_data.world_y_size/2.0, 0.0);
170. }
171.
172. //NEW - this designates the location for a new FTP
173. //**
174. void Radar::inputFTP(GlxDrawCallbackStruct *cb)
175. {
176. // Variables for the location of the FTP in world coordinates
177. float wx, wy;
178.
179. // Variable for which FTP is the next to be input
180. int next_FTP = 0;
181.

93

182. // Find out which FTP is the next to be assigned
183. while ((next_FTP < MAX_FTP) && (FTP_array[next_FTP].used == TRUE))
184. next_FTP++;
185.
186. if (theRadar->FTP_add_mode)
187. {
188. if (next_FTP != MAX_FTP)
189. { // one is available, so add it; otherwise do nothing
190.
191. // Call computeworldcoordinate() to convert the screen coordinate
192. // on the radar screen to terrain coordinates
193. computeworldcoordinate((Screencoord)cb->event->xbutton.x,
194. (Screencoord)cb->event->xbutton.y, &wx, &wy);
195.
196. // Set the fields of the FTP array
197. FTP_array[next_FTP].used = TRUE;
198. FTP_array[next_FTP].position.x_posit = wx;
199. FTP_array[next_FTP].position.y_posit = wy;
200.
201. // the top priority FTP changed, so send message to NPSNET
202. if (next_FTP == 0)
203. theMessage -> FTPChanged(FTP_array[next_FTP].used,
204. FTP_array[next_FTP].position.x_posit,
205. FTP_array[next_FTP].position.y_posit);
206.
207. } // end if next_FTP != MAX_FTP
208.
209. } // end if FTP_add_mode on
210.
211. else // FTP add mode is off, so let the user pick an FTP and delete it
212. {
213. // Call computeworldcoordinate() to convert the screen coordinate
214. // on the radar screen to terrain coordinates
215. computeworldcoordinate((Screencoord)cb->event->xbutton.x,
216. (Screencoord)cb->event->xbutton.y, &wx, &wy);
217.
218. for(int ix=0;ix<MAX_FTP;ix++)
219. {
220. // If the FTP got picked, delete it
221. if (((wx >= (FTP_array[ix].position.x_posit - (_range/20.0f))) &&
222. (wx <= (FTP_array[ix].position.x_posit + (_range/20.0f)))) &&
223. ((wy >= (FTP_array[ix].position.y_posit - (_range/20.0f))) &&
224. (wy <= (FTP_array[ix].position.y_posit + (_range/20.0f)))))
225. deleteFTP(ix);
226. } // end try to delete an FTP
227.
228. } // end else state

94

229.
230. } // end inputFTP()
231.
232. //**
233. void Radar::initialize_gl()
234. {
235. float scrnaspect; // aspect ratio value
236. long xscrnsize; // size of screen in x used to set globals
237.
238. xscrnsize = getgdesc(GD_XPMAX); // get/set screen size[/aspect]
239. if (xscrnsize == 1280)
240. {
241. keepaspect(5, 4);
242. scrnaspect = 1.25;
243. }
244. else if (xscrnsize == 1023)
245. {
246. keepaspect(4, 3);
247. scrnaspect = 1.34;
248. }
249. else
250. {
251. fprintf(stderr, “Something’s EXTREMELY wrong: “);
252. fprintf(stderr, “xscrnsize=%d\n”, xscrnsize);
253. exit(-1) ;
254. }
255.
256. // Always turn subpixel true.
257. subpixel(TRUE);
258.
259. //define the font
260. fontdef(1L, G_data.hud_font_file);
261.
262. doublebuffer();
263. }
264.
265. //**
266. void Radar::monitorNet()
267. {
268. G_data.doing = MONITOR;
269.
270. //there will be no outgoing PDUs
271. G_data.net = RECEIVE;
272.
273. //stop generating PDUs, if we are generating them
274. for(int ix =0;ix<MAX_VEH;ix++)
275. {

95

276. if (G_vehlist[ix].vehptr != NULL)
277. { //is it an active entity
278. if(G_vehlist[ix].vehptr->get_C2_flag())
279. {
280. //we have to deactivate the vehicle
281. deactiveate__entity(ix);
282. }
283. }
284. }
285. }
286.
287. //**
288. // taken from the file inst_ptr.c to draw the artificial horizon
289. void Radar::updateRadar(float posX, float posY, float hdg)
290. {
291. //set the global position x and y based on the socket input
292. _posX = posX;
293. _posY = posY;
294. _hdg = hdg;
295.
296. // set the correct window to draw the radar into
297. GLXwinset(XtDisplay(theRadar->baseWidget()), XtWindow(theRadar->
298. baseWidget()));
299.
300. // set the background color for the radar screen
301. RGBcolor(0, 0, 0);
302. clear();
303.
304. // display only the selected range centered at posX and posY
305. ortho2(_posX - _range, _posX + _range,
306. _posY - _range, _posY + _range);
307.
308. // translate (-_posX, -_posY, 0) to place origin at current position
309. translate (_posX, _posY, 0.0);
310.
311. //NEW - real radar screens don’t rotate, so don’t rotate (heading);
312. // rot(_hdg, ‘z’);
313.
314. // translate (posX, posY, 0) to return view back to normal
315. translate (-_posX, -_posY, 0.0);
316.
317. // draw radar range rings
318. linewidth(1);
319. cpack (0x00ff0000);
320. circ(posX,posY,20000.0f);
321. cpack (0x0000ff00);
322. circ(posX,posY,10000.0f);

96

323. cpack (0x0000ffff);
324. circ(posX,posY,5000.0f);
325. cpack (0x000000ff);
326. circ(posX,posY,1000.0f);
327. linewidth(1);
328.
329. drawBoundaries();
330. Update_map();
331.
332. } // updateRadar(float,float,float)
333.
334. //**
335. void Radar::Update_map()
336. {
337. static int count = 0;
338. static double oldtime =0.0;
339.
340. //if the network is open, update the time
341. if(G_data.net != CLOSED)
342. {
343.
344. G_data.sim_time = pfGetTime();
345. if(oldtime < G_data.sim_time)
346. G_data.delta_time = G_data.sim_time - oldtime;
347. else // time reset
348. G_data.delta_time = 0;
349. oldtime = G_data.sim_time;
350.
351. //move all of the icons
352. update_entities();
353.
354. if(G_data.net != OPEN)
355. {
356. //where are all of the entities
357. draw_stuff_on_map();
358. }
359. }
360.
361. if(G_data.net != CLOSED)
362. {
363. parse_net_pdus();
364. }
365.
366. swapbuffers();
367. count ++;
368. }
369.

97

370.
371. //**
372. void Radar::draw_stuff_on_map()
373. // draws the new and improved 2D map on the screen
374. {
375. int ix, inttype;
376. float pos[3];
377. char text[40];
378.
379. //use the pretty pictures
380. font(1);
381.
382. for(ix=0;ix<MAX_VEH;ix++)
383. {
384. if(G_vehlist[ix].vehptr == NULL) continue;
385. pfCopyVec3(pos,G_vehlist[ix].vehptr->getposition());
386. inttype = G_vehlist[ix].type;
387. if (inttype < 1)
388. sprintf(text,”%c”,’?’);
389. else if ((inttype >= 1) && (inttype <= 5))
390. sprintf(text,”%c”,’J’);
391. else if ((inttype >= 6) && (inttype <= 10))
392. sprintf(text,”%c”,’E’);
393. else if ((inttype >= 11) && (inttype <= 20))
394. sprintf(text,”%c”,’Q’);
395. else if ((inttype >= 20) && (inttype <= 25))
396. sprintf(text,”%c”,’R’);
397. else if ((inttype >= 26) && (inttype <= 30))
398. sprintf(text,”%c”,’C’);
399. else if ((inttype >= 31) && (inttype <= 35))
400. sprintf(text,”%c”,’?’);
401. else if ((inttype >= 36) && (inttype <= 40))
402. sprintf(text,”%c”,’A’);
403. else if ((inttype >= 41) && (inttype <= 45))
404. sprintf(text,”%c”,’I’);
405. else if ((inttype >= 46) && (inttype <= 50))
406. sprintf(text,”%c”,’I’);
407. else if ((inttype >= 51) && (inttype <= 55))
408. sprintf(text,”%c”,’G’);
409. else if ((inttype >= 56) && (inttype <= 57))
410. sprintf(text,”%c”,’A’);
411. else if ((inttype >= 58) && (inttype <= 60))
412. sprintf(text,”%c”,’I’);
413. else if ((inttype >= 61) && (inttype <= 70))
414. sprintf(text,”%c”,’B’);
415. // DON’T PRINT SUBS ON DISPLAY
416. else if ((inttype >= 71) && (inttype <= 75))

98

417. sprintf(text,”%c”,’ ‘);
418. else if ((inttype >= 76) && (inttype <= 80))
419. sprintf(text,”%c”,’?’);
420. else if ((inttype >= 81) && (inttype <= 95))
421. sprintf(text,”%c”,’&’);
422. else if ((inttype >= 96) && (inttype <= 99))
423. sprintf(text,”%c”,’?’);
424. else if ((inttype >= 100) && (inttype <= 199))
425. sprintf(text,”%c”,’/’);
426. else
427. sprintf(text,”%c”,’x’);
428.
429.
430. switch(G_vehlist[ix].vehptr->getforce())
431. {
432. case ForceID_Blue:
433. cpack(0xffff8f00);
434. break;
435. case ForceID_Red:
436. cpack(0xff0000ff);
437. break;
438. case ForceID_White:
439. cpack(0xffffffff);
440. break;
441. default:
442. cpack(0xff00ff00);
443. break;
444. }
445.
446. cmov2(pos[X],pos[Y]);
447. charstr(text);
448. }
449.
450. //back to the normal text
451. font(0);
452.
453. //NEW - this calls the function to draw the heading bug
454. drawHeadingBug();
455.
456. //NEW - draw the sonobuoys and their bearing lines
457. drawSonobuoys();
458.
459. //NEW - draw the FTPs
460. drawFTPs();
461. }
462.
463. //**

99

464. int Radar::pickVehicle()
465. // draws pick map on the radar screen to evaluate mouse input
466. {
467. static int ix;
468. static float pos[3];
469. static char text[40];
470. static int numofhits;
471.
472. // set the correct window to draw the pick map into
473. GLXwinset(XtDisplay(theRadar->baseWidget()), XtWindow(theRadar->
474. baseWidget()));
475.
476. //set up the pick buffers
477. pushmatrix();
478. pick(pickbuffer,MAX_VEH);
479.
480. // **************** Set up the window ******************
481. ortho2(_posX - _range, _posX + _range,
482. _posY - _range, _posY + _range);
483.
484. // translate (-_posX, -_posY, 0) to place origin at current position
485. translate (_posX, _posY, 0.0);
486.
487. // rotate (heading);
488. rot(_hdg, ‘z’);
489.
490. // translate (posX, posY, 0) to return view back to normal
491. translate (-_posX, -_posY, 0.0);
492.
493. font(1);
494.
495. for(ix=0;ix<MAX_VEH;ix++)
496. {
497. if(pos,G_vehlist[ix].vehptr == NULL) continue;
498. pfCopyVec3(pos,G_vehlist[ix].vehptr->getposition());
499.
500. //store the location
501. loadname((short)ix);
502.
503. //figure out where the guy is
504. sprintf(text,”%c”,’E’);
505. cpack(0xffffffff);
506. cmov2(pos[X],pos[Y]);
507. charstr(text);
508. }
509. font(0);
510.

100

511. //number of things picked from the screen
512. numofhits = (int)endpick(pickbuffer);
513.
514. if(numofhits > 0)
515. {
516. popmatrix();
517. return (pickbuffer[1]);
518. }
519. else // no vehicle was selected
520. {
521. popmatrix();
522. return (0);
523. }
524. }
525.
526. //NEW - changed from old code
527. //**
528. // computeworldcoordinate -
529. // This function computes the world coordinate corresponding to the
530. // input mouse coordinate.
531. // The input mouse coordinate is in the X window system so the
532. // origin is in the upper left corner.
533. //
534. // Inputs:
535. // int x,y = input mouse coordinate in X coordinate system.
536. //
537. // Outputs:
538. // float *wx, *wy = returned world coordinate.
539. //
540.
541. void Radar::computeworldcoordinate(int x, int y, float *wx, float *wy)
542. {
543. // Find the world x coordinate
544. *wx = ((2 * _range)/324.0f) * (x) + (_posX - _range);
545.
546. // Find the world y coordinate
547. *wy = ((2 * _range)/324.0f) * ((324.0f - 1) - y) + (_posY - _range);
548. }
549.
550. //**
551. void Radar::setRange(int range)
552. {
553. //set range as a function of the % of the world size
554. //NEW - only show the shortest distance that can be seen
555. if (G_data.maxX < G_data.maxY)
556. _range = ((G_data.maxX * float(range) / 100.0) / 2.0);
557. else

101

558. _range = ((G_data.maxY * float(range) / 100.0) / 2.0);
559.
560. if (_range < 1.0)
561. _range = 1.0;
562. }
563.
564. //**
565. // draw the boundaries of the world
566. void Radar::drawBoundaries()
567. {
568. static float p[4][2];
569. p[0][0] = G_data.minX;
570. p[0][1] = G_data.minY;
571.
572. p[1][0] = G_data.minX;
573. p[1][1] = G_data.maxY;
574.
575. p[2][0] = G_data.maxX;
576. p[2][1] = G_data.maxY;
577.
578. p[3][0] = G_data.maxX;
579. p[3][1] = G_data.minY;
580.
581. cpack(0xFF888888);
582.
583. bgnclosedline();
584. v2f(p[0]);
585. v2f(p[1]);
586. v2f(p[2]);
587. v2f(p[3]);
588. endclosedline();
589. }
590.
591. //NEW - all FTP functionality
592. // This function turns on/off the pick functions for FTPs
593. void Radar::FTPState(short state)
594. {
595. // Allow the user to input a new a FTP
596. if (state)
597. theRadar->FTP_add_mode = 1;
598.
599. // Allow the user to pick a FTP and delete it
600. else
601. theRadar->FTP_add_mode = 0;
602. }
603.
604.

102

605. //NEW - Draw the heading bug
606. void Radar::drawHeadingBug()
607. {
608. // 2x2 array for starting point and endpoint for the heading bug
609. float head_vec[2][2];
610.
611. // This is the starting point, the center of the display
612. head_vec[0][0] = _posX;
613. head_vec[0][1] = _posY;
614.
615. // The endpoint is in the direction of heading, scaled so that
616. // it appears the same length no matter what the range setting of
617. // the radar is.
618. head_vec[1][0] = _posX + ((_range/5.0f) * sinf(_hdg * DEG_TO_RAD));
619. head_vec[1][1] = _posY + ((_range/5.0f) * cosf(_hdg * DEG_TO_RAD));
620.
621. // draw the heading bug
622. linewidth(1);
623. cpack (0x00ffffff); // color white
624. bgnline();
625. v2f(head_vec[0]);
626. v2f(head_vec[1]);
627. endline();
628. }
629.
630.
631. //NEW - this function adds a new sonobuoy to the sonobuoy array
632. void Radar::sonobuoyLaunch(short state)
633. {
634. // State is true so add a new sonobuoy; otherwise, do nothing
635. if ((state) && (next_Sonobuoy < MAX_SONOBUOYS))
636. {
637. Sono_array[next_Sonobuoy].sono_used = TRUE;
638. Sono_array[next_Sonobuoy].sono_position.sono_x_posit = _posX;
639. Sono_array[next_Sonobuoy].sono_position.sono_y_posit = _posY;
640. next_Sonobuoy++;
641. }
642. }
643.
644.
645. //NEW - this draws the sonobuoys and lines of bearing to the sub
646. void Radar::drawSonobuoys()
647. {
648. // This if for the font to be used
649. char text[40];
650.
651. cpack(0x0000ff00); // color green

103

652.
653. // Draw the sonobuoys and their bearing lines
654. for(int ax = 0; ax < MAX_SONOBUOYS; ax++)
655. {
656. // Variables for distance calculation
657. float dist_to_contact = MAX_SONO_RANGE;
658. float temp_distance = 0.0f;
659.
660. // Variable for which ID we are going to target
661. int contact_ID = -1;
662.
663. // Array to hold the endpoints of bearing lines
664. float bearing_line[2][2] = {0};
665.
666. // Arrays for target position
667. float target_pos[3], temp_pos[3];
668.
669. if (Sono_array[ax].sono_used == TRUE)
670. {
671. // Sonobuoy is the first point of the bearing line
672. bearing_line[0][0] = Sono_array[ax].sono_position.sono_x_posit;
673. bearing_line[0][1] = Sono_array[ax].sono_position.sono_y_posit;
674.
675. // First draw the sonobuoy symbol
676. font(1);
677. sprintf(text,”%c”,’0’);
678. cmov2(bearing_line[0][0], bearing_line[0][1]);
679. charstr(text);
680.
681. // Now draw the bearing line to the target
682. for(int bx = 0; bx < MAX_VEH; bx++)
683. {
684. if ((G_vehlist[bx].vehptr != NULL) &&
685. (G_vehlist[bx].vehptr->gettype() == SUBMERSIBLE))
686. { // this is a SUB, so find if it is the closest
687. pfCopyVec3(temp_pos, G_vehlist[bx].vehptr->getposition());
688. temp_distance = computeTheDist(bearing_line[0][0],
689. bearing_line[0][1],
690. temp_pos[X], temp_pos[Y]);
691.
692. // shorter distance test
693. if (temp_distance < dist_to_contact)
694. { // it is closer, so target it
695. pfCopyVec3(target_pos, temp_pos);
696. contact_ID = bx;
697. dist_to_contact = temp_distance;
698.

104

699. } // end if closer
700.
701. } // end if this is a sub
702.
703. } // end search for closest SUB to draw to
704.
705. if (contact_ID != -1)
706. { // we have the closest contact, so draw the bearing line
707. // Target is the endpoint of the bearing line
708. bearing_line[1][0] = target_pos[X];
709. bearing_line[1][1] = target_pos[Y];
710.
711. // Draw the bearing line
712. font(0);
713. linewidth(1);
714. bgnline();
715. v2f(bearing_line[0]);
716. v2f(bearing_line[1]);
717. endline();
718.
719. } // end if we have a contact
720.
721. } // end if the sonobuoy is to be drawn
722.
723. } // end for all possible sonobuoys
724.
725. } // end drawSonobuoys()
726.
727.
728. //NEW - this draws the sonobuoys and lines of bearing to the sub
729. void Radar::drawFTPs()
730. {
731. // This if for the font to be used
732. char text[40];
733.
734. // First check to see if the vehicle is close enough to
735. // capture the #1 FTP; is so, delete and launch a sonobuoy
736. if ((FTP_array[0].used == TRUE) &&
737. ((computeTheDist(_posX, _posY,
738. FTP_array[0].position.x_posit,
739. FTP_array[0].position.y_posit))
740. <= FTP_CAPTURE_RANGE))
741. {
742. deleteFTP(0);
743. sonobuoyLaunch(1);
744. } // end capture FTP
745.

105

746. // Draw the FTPs
747. font(1);
748. cpack(0x00ff00ff); // color cyan
749. for(int cx = 0; cx < MAX_FTP; cx++)
750. {
751. // Only put it on the screen if it is active
752. if (FTP_array[cx].used == TRUE)
753. {
754. // Designate the FTP font to be used in order of priority
755. if (cx == 0)
756. sprintf(text,”%c”,’4’);
757. else if (cx == 1)
758. sprintf(text,”%c”,’5’);
759. else if (cx == 2)
760. sprintf(text,”%c”,’6’);
761. else if (cx == 3)
762. sprintf(text,”%c”,’7’);
763. else if (cx == 4)
764. sprintf(text,”%c”,’8’);
765. else
766. sprintf(text,”%c”,’9’);
767.
768. // Put the character in the correct radar position
769. cmov2(FTP_array[cx].position.x_posit,
770. FTP_array[cx].position.y_posit);
771. charstr(text);
772. } // end if FTP is used
773.
774. } // end for all possible sonobuoys
775. font(0);
776.
777. } // end drawFTPs()
778.
779.
780. //NEW - this deletes the selected FTP and changes the priority
781. // of those that remain
782. void Radar::deleteFTP(int FTPid)
783. {
784. // The number deleted is the top priority FTP, so send
785. // new message to NPSNET
786. if ((FTPid == 0) && (FTP_array[FTPid].used == TRUE))
787. theMessage -> FTPChanged(FTP_array[FTPid + 1].used,
788. FTP_array[FTPid + 1].position.x_posit,
789. FTP_array[FTPid + 1].position.y_posit);
790.
791. // Rearrange the rest of the array
792. while (FTPid < (MAX_FTP - 1))

106

793. {
794. FTP_array[FTPid] = FTP_array[FTPid + 1];
795. FTPid++;
796. } // end rearrange FTPs
797.
798. // Set the last FTP to unused
799. FTP_array[FTPid].used = FALSE;
800.
801. } // end deleteFTP()
802.
803.
804. //NEW - used to calculate the 2D distance between 2 points using the
805. // Pythagorean theorem
806. float Radar::computeTheDist(float from_x, float from_y,
807. float to_x, float to_y)
808. {
809. return(sqrt(((to_y - from_y) * (to_y - from_y)) +
810. ((to_x - from_x) * (to_x - from_x))));
811. }

107

LIST OF REFERENCES

[HART94] Hartman, J., Creek, P., “IRIS Performer Programming Guide”, Document
Number 007-1680-020, Silicon Graphics, Inc., Mountain View,
California, 1994.

[LWSM92] Commander, Naval Air Systems Command, “LAMPS MK III Weapon
System Manual”, NAVAIR A1-H60BB-NFM-010, Washington, D.C., 1
March 1992.

[MCMA95] McMahan, C. B., “NPSNET IV: An Object-Oriented Interface for a
Three-Dimensional Virtual World”, Master’s Thesis, Naval Postgraduate
School, Monterey, California, December, 1994.

[NTPS90] Commander, Naval Air Systems Command, “NATOPS Flight Manual,
Navy Model SH-60B Aircraft”, NAVAIR A1-H60BB-NFM-000,
Washington, D.C., 15 June 1990.

[PROU86] Prouty, Raymond W.,Helicopter Performance, Stability, and Control,
PWS Publishers, Boston, Massachusetts, 1986.

[ZYDA94] Zyda, Michael J., Macedonia, Michael R., Pratt, David R., Barham, Paul
T., Zezwitz, Steven, “NPSNET: A Network Software Architecture for
Large Scale Virtual Environments”, Naval Postgraduate School,
Monterey, California, 1994.

[ZYDA95] Zyda, Michael J., Macedonia, Michael R., Brutzman, Donald P., Pratt,
David R., Barham, Paul T., “NPSNET: A Multi-Player 3D Virtual
Environment Over the Internet”,Proceedings of 1995 Symposium on
Interactive 3D Graphics, 1995.

108

109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center. 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library . 2
Code 013
Naval Postgraduate School
Monterey, CA 93943-5101

3. Dr. Ted Lewis, Chairman and Professor. 1
Computer Science Department Code CS/LT
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. David R. Pratt, Assistant Professor. 3
Computer Science Department Code CS/PR
Naval Postgraduate School
Monterey, CA 93943-5000

5. John S. Falby, Lecturer . 3
Computer Science Department Code CS/FJ
Naval Postgraduate School
Monterey, CA 93943-5000

6. Dr. Michael J. Zyda, Professor . 10
Computer Science Department Code CS/ZK
Naval Postgraduate School
Monterey, CA 93943-5000

7. Paul Barham, Computer Specialist . 1
Computer Science Department Code CS/Barham
Naval Postgraduate School
Monterey, CA 93943-5000

8. Don Selvy . 1
A&T, Inc.
1215 Jefferson Davis Highway, Suite 310
Arlington, VA 22202-4302

110

9. Lt Frederick C. Lentz, III . 2
818 Sherri St.
Ridgecrest, CA 93555-3436

